【題目】如圖,四邊形ABCD中,AB=AD,CB=CD,AB ∥ CD.
(1)求證:四邊形ABCD是菱形.
(2)當△ABD滿足什么條件時,四邊形ABCD是正方形.(直接寫出一個符合要求的條件).
(3)對角線AC和BD交于點O,∠ ADC =120°,AC=8, P為對角線AC上的一個動點,連接DP,將DP繞點D逆時針方向旋轉(zhuǎn)120°得到線段DP1,直接寫出A P1的取值范圍.
【答案】(1)見解析;(2)見解析;(3) .
【解析】(1)先證明四邊形ABCD是平行四邊形,然后證明它是菱形即可.
(2)由(1)已知四邊形ABCD是菱形,所以當△ABD是直角三角形時,四邊形ABCD是正方形.
(3)將線段AC順時針方向旋轉(zhuǎn)60°得到線段CE,并連接AE,點到直線的距離垂線段最短,所以AP1垂直CE時,AP1取最小值,點P1在E點,AP1取最大值,即可求解.
證明:(1) AB=AD,CB=CD,∴∠ABD=∠ADB,∠CBD=∠CDB,
∵AB∥CD,∴∠ABD=∠CDB,∴∠ADB=∠CBD,
∴AD∥BC,∴四邊形ABCD是平行四邊形.
又∵AB=AD,∴四邊形ABCD是菱形.
(2)要使四邊形ABCD是正方形,則∠A=∠ABC=∠C=∠ADC=90°,
∴當△ABD是直角三角形時,即∠BAD=90°時,四邊形ABCD是正方形;
(3)以點C為中心,將線段AC順時針方向旋轉(zhuǎn)60°得到線段CE,由題意可知,點P1在線段CE上運動.
連接AE,
∵AC=CE,∠ACE=60°,∴△ACE為等邊三角形,
∴AC=CE=AE=8,過點A作于點F,
∴.當點P1在點F時,線段AP1最短,此時;.
當點P1在點E時,線段AP1最長,此時AP1=8,
..
科目:初中數(shù)學 來源: 題型:
【題目】同學們都知道:|5﹣(﹣2)|表示5與﹣2之差的絕對值,實際上也可理解為5與﹣2兩數(shù)在數(shù)軸上所對應的兩點之間的距離.請你借助數(shù)軸進行以下探索:
(1)數(shù)軸上表示5與﹣2兩點之間的距離是
(2)數(shù)軸上表示x與2的兩點之間的距離可以表示為 .
(3)同理|x+3|+|x﹣1|表示數(shù)軸上有理數(shù)x所對應的點到﹣3和1所對應的點的距離之和,請你找出所有符合條件的整數(shù)x,使得|x+3|+|x﹣1|=4,這樣的整數(shù)是 .
(4)由以上探索猜想|x+10|+|x+2|+|x﹣8|是否有最小值?如果有,直接寫出最小值;如果沒有,說明理由.
(5)由以上探索猜想|x+10|+|x+2|+|x﹣8|+|x﹣10|是否有最小值?如果有,直接寫出最小值;如果沒有,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,是工人師傅用同一種材料制成的金屬框架,已知,,,其中的周長為24cm,,則制成整個金屬框架所需這種材料的總長度為( )
A. 45cm B. 48cm C. 51cm D. 54cm
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公司與銷售人員簽訂了這樣的工資合同:工資由兩部分組成,一部分是基本工資,每人每月3000元;另一部分是按月銷售量確定的獎勵工資,每銷售一件產(chǎn)品,獎勵工資10元.設某銷售員銷售產(chǎn)品x件,他應得工資記為y元.
(1)求y與x的函數(shù)關系式.
(2)該銷售員的工資為4100元,他這個月銷售了多少件產(chǎn)品?
(3)要使每月工資超過4500元,該月的銷售量應當超過多少件?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,若點A在數(shù)軸上對應的數(shù)為a,點B在數(shù)軸上對應的數(shù)為b,且a,b滿足|a+2|+(b﹣1)2=0.
(1)求線段AB的長;
(2)點C在數(shù)軸上對應的數(shù)為x,且x是方程2x﹣1=x+2的解,在數(shù)軸上是否存在點P,使PA+PB=PC,若存在,直接寫出點P對應的數(shù);若不存在,說明理由;
(3)在(1)的條件下,將點B向右平移5個單位長度至點B’,此時在原點O處放一擋板,一小球甲從點A處以1個單位長度/秒的速度向左運動;同時另一小球乙從點B’處以2個單位長度/秒的速度也向左運動,在碰到擋板后(忽略球的大小,可看作一點)以原來的速度向相反的方向運動,設運動的時間為t(秒),求甲、乙兩小球到原點的距離相等時經(jīng)歷的時間.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,在△ABC中,∠BAC=90°,AB=AC,點E在AC上(且不與點A,C重合),在△ABC的外部作△CED,使∠CED=90°,DE=CE,連接AD,分別以AB,AD為鄰邊作平行四邊形ABFD,連接AF.
(1)請直接寫出線段AF,AE的數(shù)量關系;
(2)將△CED繞點C逆時針旋轉(zhuǎn),當點E在線段BC上時,如圖②,連接AE,請判斷線段AF,AE的數(shù)量關系,并證明你的結(jié)論;
(3)在圖②的基礎上,將△CED繞點C繼續(xù)逆時針旋轉(zhuǎn),請判斷(2)問中的結(jié)論是否發(fā)生變化?若不變,結(jié)合圖③寫出證明過程;若變化,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=﹣3x+3與x軸交于點B,與y軸交于點A,以線段AB為邊,在第一象限內(nèi)作正方形ABCD,點C落在雙曲線y= (k≠0)上,將正方形ABCD沿x軸負方向平移a個單位長度,使點D恰好落在雙曲線y= (k≠0)上的點D1處,則a= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AB是直徑,作OD∥BC與過點A的切線交于點D,連接DC并延長交AB的延長線于點E.
(1)求證:DE是⊙O的切線;
(2)若AE=6,CE=2 ,求線段CE、BE與劣弧BC所圍成的圖形面積.(結(jié)果保留根號和π)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校為了解九年級學生體育測試情況,以九年級(1)班學生的體育測試成績?yōu)闃颖,按A,B,C,D四個等級進行統(tǒng)計,并將統(tǒng)計結(jié)果繪制成如下的統(tǒng)計圖,請你結(jié)合圖中所給信息解答下列問題:
(說明:A級:90分~100分;B級:75分~89分;C級:60分~74分;D級:60分以下)
(1)九年級(1)班體育測試的人數(shù)為;
(2)請把條形統(tǒng)計圖補充完整;
(3)扇形統(tǒng)計圖中A級所在的扇形的圓心角度數(shù)是;
(4)若該校九年級有500名學生,請你用此樣本估計體育測試中A級和B級的學生人數(shù)約為多少人?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com