【題目】如圖,直線y=﹣3x+3與x軸交于點(diǎn)B,與y軸交于點(diǎn)A,以線段AB為邊,在第一象限內(nèi)作正方形ABCD,點(diǎn)C落在雙曲線y= (k≠0)上,將正方形ABCD沿x軸負(fù)方向平移a個(gè)單位長(zhǎng)度,使點(diǎn)D恰好落在雙曲線y= (k≠0)上的點(diǎn)D1處,則a= .
【答案】2
【解析】解:對(duì)于直線y=﹣3x+3,
令x=0,得到y(tǒng)=3;令y=0,得到x=1,即A(0,3),B(1,0),
過(guò)C作CE⊥x軸,交x軸于點(diǎn)E,過(guò)A作AF∥x軸,過(guò)D作DF垂直于AF于F,如圖所示,
∵四邊形ABCD為正方形,
∴AB=BC,∠ABC=90°,
∴∠OAB+∠ABO=90°,∠ABO+∠EBC=90°,
∴∠OAB=∠EBC,
在△AOB和△BEC中,
,
∴△AOB≌△BEC(AAS),
∴BE=AO=3,CE=OB=1,
∴C(4,1),
把C坐標(biāo)代入反比例解析式得:k=4,即y= ,
同理得到△DFA≌△BOA,
∴DF=BO=1,AF=AO=3,
∴D(3,4),
把y=4代入反比例解析式得:x=1,即D1(1,4),
則將正方形ABCD沿x軸負(fù)方向平移2個(gè)單位長(zhǎng)度,使點(diǎn)D恰好落在雙曲線y= (k≠0)上的點(diǎn)D1處,即a=2,
故答案為:2.
對(duì)于直線解析式,分別令x與y為0求出y與x的值,確定出A與B坐標(biāo),后根據(jù)三角形全等得出C點(diǎn)坐標(biāo),進(jìn)而求出反比例函數(shù)的解析式,進(jìn)而確定D點(diǎn)的坐標(biāo)和D1點(diǎn)的坐標(biāo),即可確定出a的值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的是( )
A.擲一枚質(zhì)地均勻的正方體骰子,骰子停止轉(zhuǎn)動(dòng)后,5點(diǎn)朝上是必然事件
B.審查書稿中有哪些學(xué)科性錯(cuò)誤適合用抽樣調(diào)查法
C.甲乙兩人在相同條件下各射擊10次,他們的成績(jī)的平均數(shù)相同,方差分別是S甲2=0.4,S乙2=0.6,則甲的射擊成績(jī)較穩(wěn)定
D.擲兩枚質(zhì)地均勻的硬幣,“兩枚硬幣都是正面朝上”這一事件發(fā)生的概率為
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線a、b相交于點(diǎn)O,∠1=50°,點(diǎn)A在直線a上,直線b上存在點(diǎn)B,使以點(diǎn)O、A、B為頂點(diǎn)的三角形是等腰三角形,這樣的B點(diǎn)有( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD中,AB=AD,CB=CD,AB ∥ CD.
(1)求證:四邊形ABCD是菱形.
(2)當(dāng)△ABD滿足什么條件時(shí),四邊形ABCD是正方形.(直接寫出一個(gè)符合要求的條件).
(3)對(duì)角線AC和BD交于點(diǎn)O,∠ ADC =120°,AC=8, P為對(duì)角線AC上的一個(gè)動(dòng)點(diǎn),連接DP,將DP繞點(diǎn)D逆時(shí)針方向旋轉(zhuǎn)120°得到線段DP1,直接寫出A P1的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的方程(x﹣3)(x﹣2)﹣p2=0.
(1)求證:無(wú)論p取何值時(shí),方程總有兩個(gè)不相等的實(shí)數(shù)根;
(2)設(shè)方程兩實(shí)數(shù)根分別為x1 , x2 , 且滿足x12+x22=3x1x2 , 求實(shí)數(shù)p的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)O是直線AB上的一點(diǎn),∠COD是直角,OE平分∠BOC.
(1)如圖(1),若∠AOC=,求∠DOE的度數(shù);
(2)如圖(2),將∠COD繞頂點(diǎn)O旋轉(zhuǎn),且保持射線OC在直線AB上方,在整個(gè)旋轉(zhuǎn)過(guò)程中,當(dāng)∠AOC的度數(shù)是多少時(shí),∠COE=2∠DOB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖四個(gè)幾何體分別是三棱柱,四棱柱,五棱柱和六棱柱,三棱柱有5個(gè)面,9條棱,6個(gè)頂點(diǎn),觀察圖形,填寫下面的空.
(1)四棱柱有 個(gè)面, 條棱, 個(gè)頂點(diǎn);
(2)六棱柱有 個(gè)面, 條棱, 個(gè)頂點(diǎn);
(3)由此猜想n棱柱有 個(gè)面, 條棱, 個(gè)頂點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC和△ADE是有公共頂點(diǎn)的等腰直角三角形,∠BAC=∠DAE=90°,點(diǎn)P為射線BD,CE的交點(diǎn).
(1)求證:BD=CE;
(2)若AB=2,AD=1,把△ADE繞點(diǎn)A旋轉(zhuǎn),
①當(dāng)∠EAC=90°時(shí),求PB的長(zhǎng);
②直接寫出旋轉(zhuǎn)過(guò)程中線段PB長(zhǎng)的最小值與最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com