【題目】某商店將每件進(jìn)價(jià)為80元的某種商店按每件110元出售,每天可售出100件.該商店想通過(guò)降低售價(jià)、增加銷(xiāo)售量的方法來(lái)提高利潤(rùn).經(jīng)市場(chǎng)調(diào)查,發(fā)現(xiàn)這種商品每件每降價(jià)5元,每天的銷(xiāo)售量可增加50件.設(shè)商品降價(jià)x元,每天銷(xiāo)售該商品獲得的利潤(rùn)為y元.

(1)求y(元)關(guān)于x(元)的函數(shù)關(guān)系式,并寫(xiě)出x的取值范圍.

(2)求當(dāng)x取何值時(shí)y最大?并求出y的最大值.

(3)若要是每天銷(xiāo)售利潤(rùn)為3750元,且盡可能最大的向顧客讓利,應(yīng)將該商品降價(jià)多少元?

【答案】(1)y=﹣10x2+200x+3000(0x30);(2)當(dāng)x=10時(shí),y最大=4000;(3)應(yīng)將該商品降價(jià)15元.

【解析】

根據(jù)題意構(gòu)建函數(shù)模型求解利潤(rùn)問(wèn)題.依題意商品降價(jià)(x元)與每天銷(xiāo)售該商品獲得的利潤(rùn)為(y元)存在函數(shù)關(guān)系:y=(110-80-x)(100+×50),依據(jù)這個(gè)二次函數(shù)關(guān)系式,求出利潤(rùn)的最大值即可.

(1)由題意得:y=(110﹣80﹣x)(100+×50)

=﹣10x2+200x+3000 (0x30)

(2)y=﹣10x2+200x+3000

=﹣10(x﹣10)2+4000

∴當(dāng)x=10時(shí),y最大=4000

(3)當(dāng)y=3750時(shí),=10x2+200x+3000=3750,解得:x1=5,x2=15.

∵要盡可能最大的向顧客讓利,x應(yīng)該取15;

∴應(yīng)將該商品降價(jià)15元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,已知直線和直線交于軸上一點(diǎn),且分別交軸于點(diǎn)、點(diǎn),且.

1)求的值;

2)如圖1,點(diǎn)是直線上一點(diǎn),且在軸上方,當(dāng)時(shí),在線段上取一點(diǎn),使得,點(diǎn)分別為軸、軸上的動(dòng)點(diǎn),連接,將沿翻折至,求的最小值;

3)如圖2分別為射線上的動(dòng)點(diǎn),連接是否存在這樣的點(diǎn),使得為等腰三角形,為直角三角形同時(shí)成立.請(qǐng)直接寫(xiě)出滿足條件的點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等腰的頂角的度數(shù)是,點(diǎn)是腰的黃金分割點(diǎn),將繞著點(diǎn)按照順時(shí)針?lè)较蛐D(zhuǎn)一個(gè)角度后點(diǎn)落在點(diǎn)處,聯(lián)結(jié),當(dāng)時(shí),這個(gè)旋轉(zhuǎn)角是________度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在美化校園的活動(dòng)中,某興趣小組想借助如圖所示的直角墻角(兩邊足夠長(zhǎng)),用28m長(zhǎng)的籬笆圍成一個(gè)矩形花園ABCD(籬笆只圍AB,BC兩邊),設(shè)AB=xm.若在P處有一棵樹(shù)與墻CD,AD的距離分別是15m和6m,要將這棵樹(shù)圍在花園內(nèi)(含邊界,不考慮樹(shù)的粗細(xì)),則花園面積S的最大值為_____m2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列各組條件中,能夠判定△ABC≌△DEF 的是( )

A. A=∠D,∠B=∠E,∠C=∠FB. ABDE,BCEF,∠A=∠D

C. B=∠E90°,BCEF,ACDFD. A=∠D,ABDF,∠B=∠E

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知△ABC的三個(gè)頂點(diǎn)在格點(diǎn)上.

1作出與△ABC關(guān)于x軸對(duì)稱的圖形△A1B1C1;

2)求出A1B1,C1三點(diǎn)坐標(biāo);

3)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為1,順次連接正方形ABCD四邊的中點(diǎn)得到第一個(gè)正方形A1B1C1D1,由順次連接正方形A1B1C1D1四邊的中點(diǎn)得到第二個(gè)正方形A2B2C2D2…,以此類推,則第六個(gè)正方形A6B6C6D6周長(zhǎng)是( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,E是正方形ABCDCD邊上一點(diǎn),以點(diǎn)A為中心把△ADE順時(shí)針旋轉(zhuǎn)90°。

(1)在圖中畫(huà)出旋轉(zhuǎn)后的圖形;

(2)若旋轉(zhuǎn)后E點(diǎn)的對(duì)應(yīng)點(diǎn)記為M,點(diǎn)FBC上,且∠EAF=45°,連接EF。

①求證:△AMF≌△AEF;

②若正方形的邊長(zhǎng)為6,AE=,求EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有這樣一個(gè)問(wèn)題:探究函數(shù)的圖象與性質(zhì),小東根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)的圖象與性質(zhì)進(jìn)行了探究,下面是小東的探究過(guò)程,請(qǐng)補(bǔ)充完整:

1)下表是的幾組對(duì)應(yīng)值,則 .

2)如圖,在平面直角坐標(biāo)系中,描出了以上表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn). 根據(jù)描出的點(diǎn),畫(huà)出該函數(shù)的圖象;

3)當(dāng)時(shí),的增大而 ;當(dāng)時(shí),的最小值為 .

查看答案和解析>>

同步練習(xí)冊(cè)答案