【題目】如圖,在的網(wǎng)格中,每個小正方形的邊長都為.網(wǎng)格線的交點稱為格點,以格點為頂點的三角形稱為格點三角形.已知直線及格點,,連接

1)請根據(jù)以下要求依次畫圖:

①在直線的左邊畫出一個格點(點不在直線上),且滿足格點是直角三角形;

②畫出關于直線的軸對稱

2)滿足(1)的面積的最大值為多少?

【答案】1)①圖見解析;②圖見解析;(2

【解析】

1)①分三種情況,結(jié)合網(wǎng)格的特點,利用勾股定理畫圖即可;

②在①的基礎上,先分別畫出點關于直線的對稱點,再順次連接即可;

2)先根據(jù)軸對稱性質(zhì)可知面積與面積相等,再利用勾股定理求出圖(1-7)中直角邊的邊長,然后利用三角形的面積公式求值,取最大值即可.

1)①分三種情況,結(jié)合網(wǎng)格的特點,利用勾股定理畫圖即可;(答案不唯一,下列情形之一均可)

②在①的基礎上,先分別畫出點關于直線的對稱點,再順次連接即可得;(答案不唯一,下列情形之一均可)

2)由軸對稱性質(zhì)可知,面積與面積相等

圖(1):

圖(2):

圖(3)和圖(4):

圖(5)和圖(6):

圖(7):

綜上,面積的最大值為5

面積的最大值為5

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c(a,b,c是常數(shù),a≠0)與x軸交于A,B兩點,頂點P(m,n).給出下列結(jié)論:①2a+c<0;②若(﹣,y1),(﹣,y2),(,y3)在拋物線上,則y1>y2>y3;③關于x的方程ax2+bx+k=0有實數(shù)解,則k>c﹣n;④當n=﹣時,△ABP為等腰直角三角形.其中正確結(jié)論是______(填寫序號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,邊上的點,連接于點,,,,連接,則線段的長為____________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了解疫情對精神負荷造成的影響,某機構(gòu)分別在一線城市和三線城市的志愿者中隨機選取了50人參加LES測試,根據(jù)志愿者的答題情況計算出LES得分,并對得分進行整理,描述和分析,部分信息如下:

一、三線城市志愿者得分統(tǒng)計表

城市

中位數(shù)

平均數(shù)

一線城市

a

17.6

三線城市

14

17.2

注:一線城市在14x20中的得分是:1515,16,17,17,17,17,18,18,20

根據(jù)以上信息,解答下列問題:

1)表中a的值為    ;

2)得分越低反映個體承受的精神壓力越小,排名越靠前,在這次調(diào)查中,一線城市的志愿者甲和三線城市的志愿者乙的得分均為15分,請判斷甲、乙在各自城市選取的志愿者中得分排名誰更靠前,并說明理由;

3)如果得分超過平均數(shù)就需要進行心理干預,請估計一線城市全部2000名志愿者中有多少人需要進行心理干預?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,已知拋物線ybxcx軸交于點A、,與y軸交于點,直線經(jīng)過B、C兩點. 拋物線的頂點為D

1)求拋物線和直線的解析式;

2)判斷△BCD的形狀并說明理由.

3)如圖②,若點E是線段BC上方的拋物線上的一個動點,過E點作EFx軸于點F,EF交線段BC于點G,當△ECG是直角三角形時,求點E的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“校同安全”受到全社會的廣泛關注,我市某中學對部分學生就校園安全知識的了解程度,采用隨機抽樣調(diào)查的方式,并根據(jù)收集到的信息進行統(tǒng)計,繪制了如圖兩幅尚不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:

1)接受問卷調(diào)查的學生共有    人,扇形統(tǒng)計圖中“了解”部分所對應扇形的圓心角為    度;并補全條形統(tǒng)計圖.

2)若該中學共有學生人,請根據(jù)上述調(diào)查結(jié)果,估計該中學學生中對校園安全知識達到“了解”和“基本了解”程度的總?cè)藬?shù)為    人;

3)若從對校園安全知識達到“了解”程度的個女生個男生中分別隨機抽取人參加校園安全知識競賽,請用樹狀圖或列表法求出恰好抽到女生的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,為了解學生的課余生活情況,某中學在全校范圍內(nèi)隨機抽取部分學生進行問卷調(diào)查. 問卷中請學生選擇最喜歡的課余生活種類(每人只選一類),選項有音樂類、美術(shù)類、體育類及其他共四類,調(diào)查后將數(shù)據(jù)繪制成扇形統(tǒng)計圖和條形統(tǒng)計圖(如圖所示).

1)參與此次問卷調(diào)查學生共多少人?

2)請根據(jù)所給的扇形圖和條形圖,填寫出扇形圖中缺失的數(shù)據(jù),并把條形圖補充完整;

3)在問卷調(diào)查中,小張和小王分別選擇了音樂類和美術(shù)類,老師要從選擇音樂類和美術(shù)類的學生中分別抽取一名學生參加活動,設選擇音樂類的四個學生為張、A1、A2A3,選擇美術(shù)類3個學生為王、B1、B2用列表或畫樹狀圖的方法求小張和小王恰好都被選中的概率;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在邊長為1的正方形ABCD中,動點E,F分別在邊ABCD上,將正方形ABCD沿直線EF折疊,使點B的對應點M始終落在邊AD(M不與點A,D重合),點C落在點N處,MNCD交于點P,設BEx

(1)AM時,求x的值;

(2)如圖2,連接BM、過B點作BH⊥MN,垂足為H,求證:BM∠ABH的角平分線;

(3)隨著點M在邊AD上位置的變化,△PDM的周長是否發(fā)生變化?如變化,請說明理由;如不變,請求出該定值;

(4)設四邊形BEFC的面積為S,求Sx之間的函數(shù)表達式,并求出S的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】張陽把他和四位同學的年齡作為一組數(shù)據(jù),計算出平均數(shù)是15,方差是0.4,則10年后張陽等5位同學的年齡的平均數(shù)和方差分別是(

A.2510.4B.154C.250.4D.150.4

查看答案和解析>>

同步練習冊答案