【題目】張陽(yáng)把他和四位同學(xué)的年齡作為一組數(shù)據(jù),計(jì)算出平均數(shù)是15,方差是0.4,則10年后張陽(yáng)等5位同學(xué)的年齡的平均數(shù)和方差分別是(

A.2510.4B.154C.250.4D.150.4

【答案】C

【解析】

可分別計(jì)算前后的方差作比較;也可根據(jù)方差是反映數(shù)據(jù)波動(dòng)大小的量來判斷.

設(shè)張陽(yáng)及其他四名同學(xué)的年齡分別為x1,x2,x3x4,x5,平均年齡15

方差S12 [x12+(x22+(x32+(x42+(x52],

十年后年五名同學(xué)的年齡分別為x110x210,x310x410,x510,平均年齡為1025;

方差S22 [x110252+(x210252+(x310252+(x410252+(x510252]

[x12+(x22+(x32+(x42+(x52]

S120.4,

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在的網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)都為.網(wǎng)格線的交點(diǎn)稱為格點(diǎn),以格點(diǎn)為頂點(diǎn)的三角形稱為格點(diǎn)三角形.已知直線及格點(diǎn),連接

1)請(qǐng)根據(jù)以下要求依次畫圖:

①在直線的左邊畫出一個(gè)格點(diǎn)(點(diǎn)不在直線上),且滿足格點(diǎn)是直角三角形;

②畫出關(guān)于直線的軸對(duì)稱

2)滿足(1)的面積的最大值為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了測(cè)量被池塘隔開的A,B兩點(diǎn)之間的距離,根據(jù)實(shí)際情況,作出如圖圖形,其中ABBE,EFBE,AF交BE于D,C在BD上.有四位同學(xué)分別測(cè)量出以下四組數(shù)據(jù):BC,ACB; CD,ACB,ADB;EF,DE,BD;DE,DC,BC.能根據(jù)所測(cè)數(shù)據(jù),求出A,B間距離的有【 】

A.1組 B.2組 C.3組 D.4組

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校研究性學(xué)習(xí)小組測(cè)量學(xué)校旗桿AB的高度,如圖在教學(xué)樓一樓C處測(cè)得旗桿頂部的仰角為60°,在教學(xué)樓三樓D處測(cè)得旗桿頂部的仰角為30°,旗桿底部與教學(xué)樓一樓在同一水平線上,已知每層樓的高度為3米,則旗桿AB的高度為

A.9B.6C.6D.6+)米

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是( )

A.?dāng)S一枚均勻的骰子,骰子停止轉(zhuǎn)動(dòng)后,6點(diǎn)朝上是必然事件

B.甲、乙兩人在相同條件下各射擊10次,他們的成績(jī)平均數(shù)相同,方差分別是,,則甲的射擊成績(jī)較穩(wěn)定

C.明天降雨的概率為,表示明天有半天都在降雨

D.了解一批電視機(jī)的使用壽命,適合用普查的方式

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形中,邊的中點(diǎn),,垂足為點(diǎn),連接,有下列五個(gè)結(jié)論:①;②;③;④;⑤.其中正確結(jié)論的個(gè)數(shù)是( )

A.1B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解某校九年級(jí)學(xué)生的體質(zhì)健康狀況,隨機(jī)抽取了該校九年級(jí)學(xué)生的10%進(jìn)行測(cè)試,將這些學(xué)生的測(cè)試成績(jī)(x)分為四個(gè)等級(jí):優(yōu)秀;良好;及格;不及格,并繪制成以下兩幅統(tǒng)計(jì)圖.

根據(jù)以上信息,解答下列問題:

1)在抽取的學(xué)生中不及格人數(shù)所占的百分比是______;

2)計(jì)算所抽取學(xué)生測(cè)試成績(jī)的平均分;

3)若不及格學(xué)生的人數(shù)為2人,請(qǐng)估算出該校九年級(jí)學(xué)生中優(yōu)秀等級(jí)的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,E、F分別是DA、BC延長(zhǎng)線上的點(diǎn),且∠ABE=∠CDF

求證:(1)△ABE≌△CDF;

2)四邊形EBFD是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)D,E,F分別在正三角形的三邊上,且也是正三角形.的邊長(zhǎng)為a,的邊長(zhǎng)為b,則的內(nèi)切圓半徑為(

A.B.

C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案