【題目】如圖,在RtABC中,∠ACB=90,AC=2BC=3.點DAC的中點,聯(lián)結(jié)BD,過點CCGBD,交AC的垂線AG于點GGC分別交BA、BD于點FE

1)求GA的長;

2)求△AFC的面積.

【答案】(1);(2).

【解析】

1)由∠ACB=90,CGBD,證得∠CBE =GCA,繼而證得△BCD ∽△CAG,其對應(yīng)邊成比例求得答案;

2)由GABC,求得,根據(jù)等高的兩個三角形面積的比等于底邊的比即可求得答案.

1)∵∠ACB=90°,

∴∠BCE+GCA=90°

CGBD,

∴∠CEB=90°

∴∠CBE+BCE=90°,

∴∠CBE =GCA

又∵∠DCB=GAC= 90°

∴△BCD ∽△CAG

,

,∴

2)∵∠GAC+BCA=180°,

GABC

又∵,

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,∠ACB90°ACBC,點GAC中點,連結(jié)BG,CEBGF,交ABE,連接GE,點HAB中點,連接FH.以下結(jié)論:(1)∠ACE=∠ABG;(2)∠AGE=∠CGB:(3)若AB10,則BF4;(4FH平分∠BFE;(5SBGC3SCGE.其中正確結(jié)論的個數(shù)是( 。

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形中,相切于點是正方形與圓的另兩個交點.

1__________,圓心到直線的距離為__________

2)求的半徑長和的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某小學為每個班級配備了一種可以加熱的飲水機,該飲水機的工作程序是:放滿水后,接通電源,則自動開始加熱,每分鐘水溫上升10℃,待加熱到100℃,飲水機自動停止加熱,水溫開始下降,水溫y(℃)與通電時間xmin)成反比例關(guān)系,直至水溫降至室溫,飲水機再次自動加熱,重復上述過程.設(shè)某天水溫和室溫為20℃,接通電源后,水溫y(℃)與通電時間xmin)的關(guān)系如下圖所示,回答下列問題:

1)當0≤x≤8時,求yx之間的函數(shù)關(guān)系式;

2)求出圖中a的值;

3)某天早上720,李老師將放滿水后的飲水機電源打開,若他想在800上課前能喝到不超過40℃的溫開水,問:他應(yīng)在什么時間段內(nèi)接水?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,以邊上一點為圓心的圓,經(jīng)過、兩點,且與邊交于點,的下半圓弧的中點,連接,若

1)求證:的切線;

2)若,,求的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等腰中,,把沿折疊,點的對應(yīng)點為,連接,使平分,若,則點是(

A.的內(nèi)心B.的外心C.的內(nèi)心D.的外心

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知二次函數(shù)的圖象經(jīng)過點

1)求的值和圖象的頂點坐標;

2)點在該二次函數(shù)圖象上.

①當時,求的值;

②若點軸的距離小于2,請根據(jù)圖象直接寫出的取值范圍;

③直接寫出點與直線的距離小于的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)如圖1,將矩形ABCD折疊,使BC落在對角線BD上,折痕為BE,點C落在點C'處,若∠ADB=54°,則∠DBE的度數(shù)為 °

2)小明手中有一張矩形紙片ABCD,AB=4AD=9.(畫一畫)如圖2,點E在這張矩形紙片的邊AD上,將紙片折疊,使AB落在CE所在直線上,折痕設(shè)為MN(點M,N分別在邊AD,BC上),利用直尺和圓規(guī)畫出折痕MN(不寫作法,保留作圖痕跡,并用黑色水筆把線段MN描清楚);

3)(算一算)如圖3,點F在這張矩形紙片的邊BC上,將紙片折疊,使FB落在射線FD上,折痕為GF,點A,B分別落在點A'B'處,若AG=,求B'D的長;

4)(驗一驗)如圖4,點K在這張矩形紙片的邊AD上,DK=3,將紙片折疊,使AB落在CK所在直線上,折痕為HI,點A,B分別落在點A',B'處,小明認為B'I所在直線恰好經(jīng)過點D,他的判斷是否正確,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AB為⊙O的直徑,C為⊙O上異于A、B的一點,過C點的切線與BA的延長線交于D點,ECD上一點,連接EA并延長交⊙OHFEH上一點,且EFCE,CF交延長線交⊙OG

1)求證:弧AG=弧GH

2)若EDC的中點,simCDO,AH2,求⊙O的半徑.

查看答案和解析>>

同步練習冊答案