【題目】某超市用5000元購進(jìn)某種干果銷售,由于銷售狀況良好,超市又調(diào)撥9000元資金購進(jìn)該種干果,但這次每千克的進(jìn)價比第一次的進(jìn)價提高了5元,購進(jìn)干果數(shù)量是第一次的1.5倍.
(1)該種干果的第一次進(jìn)價是每千克多少元?
(2)如果超市按每千克40元的價格出售,當(dāng)大部分干果售出后,余下的100千克按售價的6折售完,超市銷售這種干果共盈利多少元?
(3)如果這兩批干果每千克售價相同,且全部售完后總利淘不低于25%,那么每千克干果的售價至少是多少元?
【答案】(1)25元;(2)4400元;(3)35元
【解析】
(1)設(shè)第一次該干果的進(jìn)貨價是每千克x元,則第二次購進(jìn)干果的進(jìn)貨價是每千克(x+5)元,根據(jù)數(shù)量=總價÷單價,再結(jié)合第一次購進(jìn)干果數(shù)量是試銷時的1.5倍,即可得出關(guān)于x的分式方程,解之經(jīng)檢驗(yàn)后即可得出結(jié)論;
(2)根據(jù)數(shù)量=總價÷單價,可求出兩次購進(jìn)干果的數(shù)量,再由利潤=銷售收入﹣成本,即可求出結(jié)論;
(3)設(shè)每千克干果售價y元,根據(jù)利潤=銷售收入﹣成本,即可得出關(guān)于y的一元一次不等式,解之取其最小值即可得出結(jié)論.
解:(1)設(shè)第一次該干果的進(jìn)貨價是每千克x元,則第二次購進(jìn)干果的進(jìn)貨價是每千克(x+5)元,
根據(jù)題意得:×1.5=,
解得:x=25,
經(jīng)檢驗(yàn),x=25是所列方程的解.
答:該種干果的第一次進(jìn)價是每千克25元.
(2)第一次購進(jìn)該干果的數(shù)量是5000÷25=200(千克),
再次購進(jìn)該干果的數(shù)量是200×1.5=300(千克),
獲得的利潤為(200+300﹣100)×40+100×40×0.6﹣5000﹣9000=4400(元).
答:超市銷售這種干果共盈利4400元;
(3)設(shè)每千克干果售價y元,
根據(jù)題意得:500y﹣5000﹣9000≥(5000+9000)×25%,
解得:y≥35.
答:每千克干果的售價至少是35元.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(問題情境)
徐老師給愛好學(xué)習(xí)的小敏和小捷提出這樣一個問題:
如圖1,△ABC中,∠B=2∠C,AD是∠BAC的平分線.求證:AB+BD=AC
小敏的證明思路是:在AC上截取AE=AB,連接DE.(如圖2)…
小捷的證明思路是:延長CB至點(diǎn)E,使BE=AB,連接AE. 可以證得:AE=DE(如圖3)…
請你任意選擇一種思路繼續(xù)完成下一步的證明.
(變式探究)
“AD是∠BAC的平分線”改成“AD是BC邊上的高”,其它條件不變.(如圖4),AB+BD=AC成立嗎?若成立,請證明;若不成立,寫出你的正確結(jié)論,并說明理由.
(遷移拓展)
△ABC中,∠B=2∠C. 求證:AC2=AB2+ABBC. (如圖5)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某校七年級學(xué)生的英語口語水平,隨機(jī)抽取該年級部分學(xué)生進(jìn)行英語口語測試,學(xué)生的測試成績按標(biāo)準(zhǔn)定為 A、B、C、D 四個等級,并把測試成績繪成如圖所示的兩個統(tǒng)計(jì)圖表.
七年級英語口語測試成績統(tǒng)計(jì)表
成績x(分) | 等級 | 人數(shù) |
x≥90 | A | 12 |
75≤x<90 | B | m |
60≤x<75 | C | n |
x<60 | D | 9 |
請根據(jù)所給信息,解答下列問題:
(1)本次被抽取參加英語口語測試的學(xué)生共有多少人?
(2)求扇形統(tǒng)計(jì)圖中 C 級的圓心角度數(shù);
(3)若該校七年級共有學(xué)生 640人,根據(jù)抽樣結(jié)課,估計(jì)英語口語達(dá)到 B級以上(包括B 級)的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某射箭隊(duì)準(zhǔn)備從王方、李明二人中選拔1人參加射箭比賽,在選拔賽中,兩人各射箭10次的成績(單位:環(huán)數(shù))如下:
次數(shù) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
王方 | 7 | 10 | 9 | 8 | 6 | 9 | 9 | 7 | 10 | 10 |
李明 | 8 | 9 | 8 | 9 | 8 | 8 | 9 | 8 | 10 | 8 |
(1)根據(jù)以上數(shù)據(jù),將下面兩個表格補(bǔ)充完整:
王方10次射箭得分情況
環(huán)數(shù) | 6 | 7 | 8 | 9 | 10 | |
頻數(shù) | ______ | ______ | ______ | ______ | ______ | |
頻率 | ______ | ______ | ______ | ______ | ______ |
李明10次射箭得分情況
環(huán)數(shù) | 6 | 7 | 8 | 9 | 10 |
頻數(shù) | ______ | ______ | ______ | ______ | ______ |
頻率 | ______ | ______ | ______ | ______ | ______ |
(2)分別求出兩人10次射箭得分的平均數(shù);
(3)從兩人成績的穩(wěn)定性角度分析,應(yīng)選派誰參加比賽合適.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,∠ABC=60°,點(diǎn)F為邊AD上一點(diǎn),連接BF交對角線AC于點(diǎn)G.
(1)如圖1,已知CF⊥AD于F,菱形的邊長為6,求線段FG的長度;
(2)如圖2,已知點(diǎn)E為邊AB上一點(diǎn),連接CE交線段BF于點(diǎn)H,且滿足∠FHC=60°,CH=2BH,求證:AH⊥CE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=﹣x+4與x軸、y軸分別交于點(diǎn)A、點(diǎn)B,點(diǎn)D在y軸的負(fù)半軸上,若將△DAB沿直線AD折疊,點(diǎn)B恰好落在x軸正半軸上的點(diǎn)C處.
(1)求AB的長和點(diǎn)C的坐標(biāo);
(2)求直線CD的解析式;
(3)y軸上是否存在一點(diǎn)P,使得S△PAB=,若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個不透明的口袋里裝有分別標(biāo)有漢字“書”、“ 香”、“ 歷”、“ 城”的四個小球,除漢字不同之外,小球沒有任何區(qū)別,每次摸球前先攪拌均勻.
(1)若從中任取一個球,球上的漢字剛好是 “書”的概率為__________.
(2)從中任取一球,不放回,再從中任取一球,請用樹狀圖或列表的方法,求取出的兩個球上的漢字能組成“歷城”的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《算法統(tǒng)宗》中有一道“蕩秋干”的問題,其譯文為:“有一架秋千,當(dāng)它靜止時,踏板上一點(diǎn)A離地1尺,將它往前推送10尺(水平距離)時,點(diǎn)A對應(yīng)的點(diǎn)B就和某人一樣高,若此人的身高為5尺,秋干的繩索始終拉得很直,試問繩素有多長?”根據(jù)上述條件,秋干繩索長為________尺.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com