【題目】如圖,在正方形ABCD和正方形DEFG,GCD,DE=2,將正方形DEFG繞點D順時針旋轉60°,得到正方形DE'F'G',此時點G'AC,連接CE',CE'+CG'=______

【答案】

【解析】

G′RBCR,則四邊形RCIG′是正方形.首先證明點F′在線段BC上,再證明CH=HE′即可解決問題.

G′RBCR,則四邊形RCIG′是正方形.

∵∠DG′F′=IG′R=90°

∴∠DG′I=RG′F′

G′IDG′RF

∴△G′ID≌△G′RF,

∴∠G′ID=G′RF′=90°,

∴點F′在線段BC上,

RtE′F′H中,∵E′F′=2,∠E′F′H=30°

E′H=E′F′=1,F′H=,

易證RG′F′≌△HF′E′,

RF′=E′H,RG′=RC=F′H

CH=RF′=E′H,

CE′=

RG′=HF′=,

CG′=RG′=,

CE′+CG′=+

故答案為:+

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一個梯子AB2.5米,頂端A靠在墻AC上,這時梯子下端B與墻角C距離為1.5米,梯子滑動后停在DE的位置上,測得BD長為0.5米,則梯子頂端A下落了( 。┟祝

A. 0.5 B. 1 C. 1.5 D. 2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在下面16×8的正方形網格中,每個小正方形的邊長為1個單位,ABC是格點三角形(頂點在網格交點處),請你畫出:

1ABC的中心對稱圖形,A點為對稱中心;

2ABC關于點P的位似ABC,且位似比為12;

3)以A、BC、D為頂點的所有格點平行四邊形ABCD的頂點D

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,CEABCD的邊AB的垂直平分線,垂足為點O,CEDA的延長線交于點E、連接AC,BEDO,DOAC交于點F,則下列結論:①四邊形ACBE是菱形;②∠ACD=∠BAE;③AFBE23;④S四邊形AFOESCOD23.其中正確的結論有(  )個.

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,過對角線BD中點的直線交ADBC邊于FE

1)求證:四邊形BEDF是平行四邊形;

2)當四邊形BEDF是菱形時,寫出EFBD的關系.

3)若∠A60°,AB4,BC6,四邊形BEDF是矩形,求該矩形的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCDAB=2AD,A0,1),CD在反比例函數(shù)k0)的圖象上,ABx軸的正半軸相交于點EEAB的中點,k的值為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,對于PQ兩點給出如下定義:若點P到兩坐標軸的距離之和等于點Q到兩坐標軸的距離之和,則稱P,Q兩點為同族點.下圖中的P,Q兩點即為同族點.

(1)已知點A的坐標為(,1),

①在點R(0,4),S(2,2),T(2, )中,為點A的同族點的是 ;

②若點Bx軸上,且A,B兩點為同族點,則點B的坐標為 ;

(2)直線l ,與x軸交于點C,與y軸交于點D,

M為線段CD上一點,若在直線上存在點N,使得M,N兩點為同族點,求n的取值范圍;

M為直線l上的一個動點,若以(m,0)為圓心, 為半徑的圓上存在點N,使得M,N兩點為同族點,直接寫出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知△ABC內接于以AB為直徑的⊙O,過點C作⊙O的切線交BA的延長線于點D,且DAAB=12.

(1)求∠CDB的度數(shù);

(2)在切線DC上截取CE=CD,連接EB,判斷直線EB與⊙O的位置關系,并證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某人在山坡坡腳C處測得一座建筑物頂點A的仰角為63.4°,沿山坡向上走到P處再測得該建筑物頂點A的仰角為53°.已知BC=90米,且B、C、D在同一條直線上,山坡坡度i=5:12.

(1)求此人所在位置點P的鉛直高度.(結果精確到0.1米)

(2)求此人從所在位置點P走到建筑物底部B點的路程(結果精確到0.1米)

測傾器的高度忽略不計,參考數(shù)據(jù):tan53°≈,tan63.5°≈2)

查看答案和解析>>

同步練習冊答案