【題目】材料:思考的同學小斌在解決連比等式問題:“已知正數,,滿足,求的值”時,采用了引入參數法,將連比等式轉化為了三個等式,再利用等式的基本性質求出參數的值.進而得出,,之間的關系,從而解決問題.過程如下:
解;設,則有:
,,,
將以上三個等式相加,得.
,,都為正數,
,即,.
.
仔細閱讀上述材料,解決下面的問題:
(1)若正數,,滿足,求的值;
(2)已知,,,互不相等,求證:.
【答案】(1)k=;(2)見解析.
【解析】
(1)根據題目中的例子可以解答本題;
(2)將題目中的式子巧妙變形,然后化簡即可證明結論成立.
解:(1)∵正數x、y、z滿足,
∴x=k(2y+z),y=k(2z+x),z=k(2x+y),
∴x+y+z=3k(x+y+z),
∵x、y、z均為正數,
∴k=;
(2)證明:設=k,
則a+b=k(a-b),b+c=2k(b-c),c+a=3k(c-a),
∴6(a+b)=6k(a-b),3(b+c)=6k(b-c),2(c+a)=6k(c-a),
∴6(a+b)+3(b+c)+2(c+a)=0,
∴8a+9b+5c=0.
故答案為:(1)k=;(2)見解析.
科目:初中數學 來源: 題型:
【題目】一個水果市場某品種蘋果的銷售方式如下表:
購買蘋數量(千克) | 不超過千克部分 | 超過千克的部分 |
每千克的價格(元) | 元 | 元 |
(1)如果小明購買千克的蘋果,那么他需要付___________元.
(2)小明分兩次共購買千克的蘋果,第二次購買的數量多于第一次購買的數量,若他兩次共付元,求他兩次分別購買蘋果的數量.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在銳角△ABC中,AB=5,tanC=3,BD⊥AC于點D,BD=3,點P從點A出發(fā),以每秒1個單位長度的速度沿AB向終點B運動,過點P作PE∥AC交邊BC于點E,以PE為邊作Rt△PEF,使∠EPF=90°,點F在點P的下方,且EF∥AB.設△PEF與△ABD重疊部分圖形的面積為S(平方單位)(S>0),點P的運動時間為t(秒)
(t>0).
(1)求線段AC的長.
(2)當△PEF與△ABD重疊部分圖形為四邊形時,求S與t之間的函數關系式,并寫出t的取值范圍.
(3)若邊EF所在直線與邊AC交于點Q,連結PQ,如圖2,直接寫出△ABC的某一頂點到P、Q兩點距離相等時t的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】母親節(jié)前夕,某商店從廠家購進A、B兩種禮盒,已知A、B兩種禮盒的單價比為3:4,單價和為210元.
(1)求A、B兩種禮盒的單價分別是多少元?
(2)該商店購進這兩種禮盒恰好用去9900元,且購進A種禮盒最多36個,B種禮盒的數量不超過A種禮盒數量的2倍,共有幾種進貨方案?
(3)根據市場行情,銷售一個A鐘禮盒可獲利12元,銷售一個B種禮盒可獲利18元.為奉獻愛心,該店主決定每售出一個B種禮盒,為愛心公益基金捐款m元,每個A種禮盒的利潤不變,在(2)的條件下,要使禮盒全部售出后所有方案獲利相同,m值是多少?此時店主獲利多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為推動全面健身,縣政府在城南新城新建體育休閑公園,公園設有A、B、C、D四個出入口供廣大市民進出.
(1)小明的爸爸去公園進行體育鍛煉,從出入口A進入的概率是________;
(2)張老師和小明的爸爸一起約定去參加鍛煉,請用畫樹狀圖或列表法求他們選擇從不同出入口進體育場的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,以△ABC的各邊,在邊BC的同側分別作三個正方形ABDI,BCFE,ACHG.
(1)求證:△BDE≌△BAC;
(2)求證:四邊形ADEG是平行四邊形.
(3)直接回答下面兩個問題,不必證明:
①當△ABC滿足條件_____________________時,四邊形ADEG是矩形.
②當△ABC滿足條件_____________________時,四邊形ADEG是正方形?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在三角形ABC中,∠A=90°,AB=AC=2,將△ABC折疊,使點B落在邊AC上點D (不與點A重合)處,折痕為PQ,當重疊部分△PQD為等腰三角形時,則AD的長為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:一次函數y=﹣2x+10的圖象與反比例函數y=(k>0)的圖象相交于A、B兩點(A的B的右側).
(1)當A(4,2)時,求反比例函數的解析式:
(2)當A的橫坐標是3,B的橫坐標是2時,直線OA與此反比例函數圖象的另一支交于另一點C,連接BC交y軸于點D.
①求C點的坐標;
②求D點的坐標;
③求△ABC的面積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com