【題目】如圖,已知點(diǎn)O(0,0),A(-5,0),B(2,1),拋物線l:y=-(x-h)2+1(h為常數(shù))與y軸的交點(diǎn)為C.
(1)l經(jīng)過點(diǎn)B,求它的解析式,并寫出此時l的對稱軸及頂點(diǎn)坐標(biāo):
(2)設(shè)點(diǎn)C的縱坐標(biāo)為yc,求yc的最大值,此時l上有兩點(diǎn)(x1,y1),(x2,y2),其中x1>x2≥0,比較y1與y1的大。
(3)當(dāng)線段OA被l只分為兩部分,且這兩部分的比是1:4時,求h的值.
【答案】(1)對稱軸x=2,頂點(diǎn)B(2,l);(2)y1<y1;(3)h=0或h=-5.
【解析】
試題(1)將點(diǎn)B代入拋物線的解析式,得解析式,從而得到拋物線的對稱軸及頂點(diǎn)坐標(biāo);
(2)用含h的式子表示yC,在根據(jù)式子特點(diǎn)求出yC的最大值及此時的h值,此時再判斷l在x>0時的增減性;
(3)設(shè)l與x軸的交點(diǎn)為M,則OM=(1/5)OA或AM=(1/5)OA,進(jìn)而得到M的坐標(biāo),代入解析式,求得h的值.
試題解析:
解:(l)把x=2,y=1代入y=-(x-h)2+1,得h=2.
∴解析式為y=-(x-2)2+1(或y=-x2+4x-3).
對稱軸x=2,頂點(diǎn)B(2,l).
(2)點(diǎn)C的橫坐標(biāo)為0,則yC=-h2+1,
∴當(dāng)h=0時,yC有最大值為1.
此時,l為y=-x2+1,對稱軸為y軸,當(dāng)x≥0時,y隨著x的增大而減。
∴x1>x2≥0時,y1<y1.
(3)把OA分1:4兩部分的點(diǎn)為(-1,0)或(-4.0).
①x=-1,y=0代入y=-(x-h)2+1,得h=0或h=-2.
但h=-2時,OA被分為三部分,不合題意,舍去.
②同樣,把x=-4,y=0代入y=-(x-h)2+1,得h=-5或h=-3(舍去)
∴h=0或h=-5.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校舉行圖書節(jié)義賣活動,將所售款項(xiàng)捐給其他貧困學(xué)生.在這次義賣活動中,某班級售書情況如下圖:
下列說法正確的是( )
A.該班級所售圖書的總數(shù)收入是226元
B.在該班級所售圖書價格組成的一組數(shù)據(jù)中,中位數(shù)是4
C.在該班級所售圖書價格組成的一組數(shù)據(jù)中,眾數(shù)是15
D.在該班級所售圖書價格組成的一組數(shù)據(jù)中,方差是2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】武漢“新冠肺炎”發(fā)生以來,某醫(yī)療公司積極復(fù)工,加班加點(diǎn)生產(chǎn)醫(yī)用防護(hù)服,為防控一線助力.以下是該公司以往的市場調(diào)查,發(fā)現(xiàn)該公司防護(hù)服的日銷售量y(套)與銷售單價x(元)之間滿足一次函數(shù)關(guān)系,如下圖所示,關(guān)于日銷售利潤w(元)和銷售單價x(元)的幾組對應(yīng)值如下表:
銷售單價x(元) | 85 | 95 | 105 |
日銷售利潤w(元) | 875 | 1875 | 1875 |
(注:日銷售利潤=日銷售量×(銷售單價一成本單價))
(1)求y關(guān)于x的函數(shù)解析式(不要求寫出x的取值范圍);
(2)根據(jù)函數(shù)圖象和表格所提供的信息,填空:
該公司生產(chǎn)的防護(hù)服的成本單價是 元,當(dāng)銷售單價x= 元時,日銷售利潤w最大,最大值是 元;
(3)該公司復(fù)工以后,在政府部門的幫助下,原材料采購成本比以往有了下降,平均起來,每生產(chǎn)一套防護(hù)服,成本比以前下降5元.該公司計(jì)劃開展科技創(chuàng)新,以降低該產(chǎn)品的成本,如果在今后的銷售中,日銷售量與銷售單價仍存在(1)中的關(guān)系.若想實(shí)現(xiàn)銷售單價為90元時,日銷售利潤不低于3750元的銷售目標(biāo),該產(chǎn)品的成本單價應(yīng)不超過多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊三角形ABC的邊長是2,M是高CH所在直線上的一個動點(diǎn),連接MB,將線段BM繞點(diǎn)B逆時針旋轉(zhuǎn)60°得到BN,連接MN,則在點(diǎn)M運(yùn)動過程中,線段MN長度的最小值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】據(jù)市場調(diào)查,天貓超市在銷售一種進(jìn)價為每件40元的護(hù)眼臺燈中發(fā)現(xiàn):每月銷售量(件)與銷售單價(元)之間的函數(shù)關(guān)系如圖所示.
(1)當(dāng)銷售單價定為50元時,求每月的銷售件數(shù);
(2)設(shè)每月獲得利潤為(元),求每月獲得利潤(元)關(guān)于銷售單價(元)的函數(shù)解析式;
(3)由于市場競爭激烈,這種護(hù)眼燈的銷售單價不得高于75元,如果要每月獲得的利潤不低于8000元,那么每月的成本最少需要多少元?(成本=進(jìn)價×銷售量).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,對稱軸為的拋物線與軸交于、兩點(diǎn),與軸交于點(diǎn),其中點(diǎn)坐標(biāo)為設(shè)拋物線的頂點(diǎn)為.
求拋物線的解析式及頂點(diǎn)坐標(biāo);
為軸上的一點(diǎn),當(dāng)的周長最小時,求點(diǎn)的坐標(biāo)及的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c的頂點(diǎn)為C(0,),與x軸交于A、B兩點(diǎn),且A(﹣1,0).
(1)求拋物線的解析式;
(2)點(diǎn)P從點(diǎn)B出發(fā),以每秒1個單位的速度向點(diǎn)A運(yùn)動,同時點(diǎn)Q從點(diǎn)C出發(fā),以每秒v個單位的速度向y軸負(fù)方向勻速運(yùn)動,運(yùn)動時間為t秒,連接PQ交射線BC于點(diǎn)D,當(dāng)點(diǎn)P到達(dá)點(diǎn)A時,點(diǎn)Q停止運(yùn)動,以點(diǎn)P為圓心,PB為半徑的圓與射線BC交于點(diǎn)E.
①求BE的長;當(dāng)t=1時,求DE的長;
②若在點(diǎn)P,Q運(yùn)動的過程中,線段DE的長始終是一個定值,求v的值及DE長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com