【題目】(8分)如圖:在四邊形ABCD中,E是AB上的一點,△ADE和△BCE都是等邊三角形,點P、Q、M、N分別為AB、BC、CD、DA的中點,四邊形MNPQ什么形狀?說明理由。

【答案】四邊形MNPQ為菱形

【解析】連接四邊形ADCB的對角線,通過全等三角形來證得AC=BD,從而根據(jù)三角形中位線定理證得四邊形NPQM的四邊相等,可得出四邊形MNPQ是菱形.

解:連接BDAC;

∵△ADE△ECB是等邊三角形,

∴AE=DE,EC=BE,∠AED=∠BEC=60°

∴∠AEC=∠DEB=120°;

∴△AEC≌△DEBSAS);

∴AC=BD;

∵M、NCD、AD的中點,

∴MN=NP=PQ=MQ,

四邊形NPQM是菱形;

故選C

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,∠ACB=90°,點FAC延長線上,DE△ABC中位線,如果∠1=30°,DE=2,則四邊形AFED的周長是________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在10×10的正方形網(wǎng)格中,每個小正方形的邊長為1個單位長度.△ABC的頂點都在正方形網(wǎng)格的格點上,且通過兩次平移(沿網(wǎng)格線方向作上下或左右平移)后得到△A′B′C′,點C的對應點是直線上的格點C′.

(1)畫出△A′B′C′.

(2)△ABC兩次共平移了___個單位長度。

(3)試在直線上畫出點P,使得由點A′、B′、C′、P四點圍成的四邊形的面積為9.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABCABAC為邊分別作正方形ADEB、ACGF,連接DC、BF:

(1)CDBF相等嗎?請說明理由;

(2)CDBF互相垂直嗎?請說明理由;

(3)利用旋轉的觀點,在此題中,ADC可看成由哪個三角形繞哪點旋轉多少角度得到的?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形中,邊的中點,連接并延長交的延長線于點,且添加一個條件使四邊形是平行四邊形,下面四個條件中可選擇的是(   。

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用兩個全等的等邊△ABC和△ADC,在平面上拼成菱形ABCD,把一個含60°角的三角尺與這個菱形重合,使三角尺有兩邊分別在AB、AC上,將三角尺繞點A按逆時針方向旋轉.

(1)如圖1,當三角尺的兩邊與BC、CD分別相交于點E、F時,觀察或測量BE,CF的長度,你能得出什么結論?證明你的結論。

(2)如圖2,當三角尺的兩邊與BC、CD的延長線分別交于E、F時,你在(1)中的結論還成立嗎?請說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在△OAB中,∠OAB=90°∠AOB=30°,OB=8.以OB為邊,在△OAB

外作等邊△OBC,DOB的中點,連接AD并延長交OCE

1)求證:四邊形ABCE是平行四邊形;

2)如圖2,將圖1中的四邊形ABCO折疊,使點C與點A重合,折痕為FG,求OG的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙C過原點O,且與兩坐標軸分別交于點A、B,點A的坐標為(02),M是第三象限內(nèi)⊙C上一點,∠BMO=120°,則圓心C的坐標為( 。

A. 1,1 B. 1 C. 2,1 D. ,1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知點A(3,3),B(5,3).

(1)在y軸的負方向上有一點C(如圖),使得四邊形AOCB的面積為18,求C點的坐標;

(2)將ABO先向上平移2個單位,再向左平移4個單位,得A1B1O1

①直接寫出B1的坐標:B1   

②求平移過程中線段OB掃過的面積.

查看答案和解析>>

同步練習冊答案