【題目】如圖,⊙C過原點O,且與兩坐標(biāo)軸分別交于點AB,點A的坐標(biāo)為(02),M是第三象限內(nèi)⊙C上一點,∠BMO=120°,則圓心C的坐標(biāo)為( 。

A. 1,1 B. 1, C. 2,1 D. ,1

【答案】D

【解析】如圖,連接AM,過點CCD⊥OB于點D,由題意可知,∠AOB=90°,OA=2,

△OBM,∠BMO=120°,

∴∠MBO+∠MOB=180°-120°=60°

∵∠MAB=∠MOB,∠MAO=∠MBO,∠BAO=∠MAB+∠MAO,

∴∠BAO=60°,

∵∠AOB=90°

∴∠ABO=30°,AB是⊙C的直徑,

AB=2AO=4,BO=BC=2,

∵CD⊥OB于點D,

OD=OB=,CD=BC=1

∴點C的坐標(biāo)為: .

故選D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,我們定義直線為拋物線、b、c為常數(shù),夢想直線;有一個頂點在拋物線上,另有一個頂點在y軸上的三角形為其夢想三角形”.

已知拋物線與其夢想直線交于A、B兩點A在點B的左側(cè),與x軸負半軸交于點C

填空:該拋物線的夢想直線的解析式為______,點A的坐標(biāo)為______,點B的坐標(biāo)為______;

如圖,點M為線段CB上一動點,將AM所在直線為對稱軸翻折,點C的對稱點為N,若為該拋物線的夢想三角形,求點N的坐標(biāo);

當(dāng)點E在拋物線的對稱軸上運動時,在該拋物線的夢想直線上,是否存在點F,使得以點AC、E、F為頂點的四邊形為平行四邊形?若存在,請直接寫出點E、F的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(8分)如圖:在四邊形ABCD中,E是AB上的一點,△ADE和△BCE都是等邊三角形,點P、Q、M、N分別為AB、BC、CD、DA的中點,四邊形MNPQ什么形狀?說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCABD都是⊙O的內(nèi)接三角形,圓心O在邊AB上,邊AD分別與BC,OC交于EF兩點,點C的中點.

(1)求證:OFBD;

(2)若點F為線段OC的中點,且⊙O的半徑R6 cm,求圖中陰影部分(弓形)的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,O是坐標(biāo)原點,點A的坐標(biāo)是(-2,4),過點AABy軸,垂足為B,連接OA.

(1)OAB的面積;

(2)若拋物線y=-x2-2x+c經(jīng)過點A.

①求c的值;

②將拋物線向下平移m個單位長度,使平移后得到的拋物線頂點落在OAB的內(nèi)部(不包括OAB的邊界),求m的取值范圍(直接寫出答案即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司為獎勵在趣味運動會上取得好成績的員工,計劃購買甲、乙兩種獎品共20件,其中甲種獎品每件40元,乙種獎品每件30元.

(1)如果購買甲、乙兩種獎品共花費了650元,求甲、乙兩種獎品各購買了多少件;

(2)如果購買乙種獎品的件數(shù)不超過甲種獎品件數(shù)的2倍,總花費不超過680元,求該公司有哪幾種不同的購買方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC中,AB=AC=10cm,BC=8cm,點DAB的中點.如果點P在線段BC上以3cm/s的速度由點BC點運動,同時,點Q在線段CA上由點CA點運動.

1)若點Q的運動速度與點P的運動速度相等,經(jīng)過1秒后,BPDCQP是否全等,請說明理由.

2)若點Q的運動速度與點P的運動速度不相等,當(dāng)點Q的運動速度為多少時,能夠使BPDCQP全等?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知,點分別在射線上移動,的平分線與的外角平分線交于點.

1)當(dāng)時, .

2)請你猜想:隨著兩點的移動,的度數(shù)大小是否變化?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,CDAB于點D,DEBCAC于點EEFCD于點G,交BC于點F

1)求證:∠ADE=∠EFC;

2)若∠ACB72°,∠A60°,求∠DCB的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案