【題目】小明和小剛玩“石頭、剪刀、布”的游戲,每一局游戲雙方各自隨機做出“石頭”、“剪刀”、“布”三種手勢的一種,規(guī)定“石頭”勝“剪刀”,“剪刀”勝“布”,“布”勝“石頭”,相同的手勢是和局.
(1)用樹形圖或列表法計算在一局游戲中兩人獲勝的概率各是多少?
(2)如果兩人約定:只要誰率先勝兩局,就成了游戲的贏家.用樹形圖或列表法求只進行兩局游戲便能確定贏家的概率.
【答案】(1)兩人獲勝的概率都是;(2)兩局游戲能確定贏家的概率為.
【解析】
(1)首先根據(jù)題意畫出樹狀圖,由樹狀圖求得所有等可能的結果與在一局游戲中兩人獲勝的情況,利用概率公式即可求得答案;
(2)因為由(1)可知,一局游戲每人勝、負、和的機會均等,都為.可畫樹狀圖,由樹狀圖求得所有等可能的結果與進行兩局游戲便能確定贏家的情況,然后利用概率公式求解即可求得答案.
(1)畫樹狀圖得:
∵總共有9種情況,每一種出現(xiàn)的機會均等,每人獲勝的情形都是3種,
∴兩人獲勝的概率都是.
(2)由(1)可知,一局游戲每人勝、負、和的機會均等,都為.
任選其中一人的情形可畫樹狀圖得:
∵總共有9種情況,每一種出現(xiàn)的機會均等,當出現(xiàn)(勝,勝)或(負,負)這兩種情形時,贏家產(chǎn)生,
∴兩局游戲能確定贏家的概率為:.
科目:初中數(shù)學 來源: 題型:
【題目】為了豐富同學們的知識,拓展閱讀視野,學習圖書館購買了一些科技、文學、歷史等書籍,進行組合搭配成、、三種套型書籍,發(fā)放給各班級的圖書角供同學們閱讀,已知各套型的規(guī)格與價格如下表:
套型 | 套型 | 套型 | |
規(guī)格(本/套) | 12 | 9 | 7 |
價格(元/套) | 200 | 150 | 120 |
(1)已知搭配、兩種套型書籍共15套,需購買書籍的花費是2120元,問、兩種套型各多少套?
(2)若圖書館用來搭配的書籍共有2100本,現(xiàn)將其搭配成、兩種套型書籍,這兩種套型的總價為30750元,求搭配后剩余多少本書?
(3)若圖書館用來搭配的書籍共有122本,現(xiàn)將其搭配成、、三種套型書籍共13套,且沒有剩余,請求出所有搭配的方案.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,弦CD⊥AB,垂足為點E,CF⊥AF,且CF=CE.
(1)求證:CF是⊙O的切線;
(2)若sin∠BAC=,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD是正方形,點E、F分別在線段BC、DC上,線段AE繞點A逆時針旋轉后與線段AF重合.若,則旋轉的角度是( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知實數(shù)a,c滿足,2a+c﹣ac+2>0,二次函數(shù)y=ax2+bx+9a經(jīng)過點B(4,n)、A(2,n),且當1≤x≤2時,y=ax2+bx+9a的最大值與最小值之差是9,求a的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】菱形中,點為上一點,連接.
如圖,若,菱形邊長為,,連接,求的長.
如圖,連接對角線、相交于點,點為的中點,過作于,連接、.試判斷的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,PC切⊙O于點P,過A作直線AC⊥PC交⊙O于另一點D,連接PA、PB.
(1)求證:AP平分∠CAB;
(2)若P是直徑AB上方半圓弧上一動點,⊙O的半徑為2,則
①當弦AP的長是_____時,以A,O,P,C為頂點的四邊形是正方形;
②當的長度是______時,以A,D,O,P為頂點的四邊形是菱形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象相交于A(﹣1,m),B(n,﹣1)兩點.
(1)求出這個一次函數(shù)的表達式.
(2)求△OAB的面積.
(3)直接寫出使一次函數(shù)值大于反比例函數(shù)值的x的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com