【題目】司機(jī)在駕駛汽車時(shí),發(fā)現(xiàn)緊急情況到踩下剎車需要一段時(shí)間,這段時(shí)間叫反應(yīng)時(shí)間.之后還會(huì)繼續(xù)行駛一段距離.我們把司機(jī)從發(fā)現(xiàn)緊急情況到汽車停止所行駛的這段距離叫剎車距離”(如圖)

已知汽車的剎車距離(單位:米)與車速(單位:米/秒)之間有如下關(guān)系:,其中為司機(jī)的反應(yīng)時(shí)間(單位:秒) ,為制動(dòng)系數(shù).某機(jī)構(gòu)為測(cè)試司機(jī)飲酒后剎車距離的變化,對(duì)某種型號(hào)的汽車進(jìn)行了醉漢駕車測(cè)試,已知該型號(hào)汽車的制動(dòng)系數(shù),并測(cè)得志愿者在未飲酒時(shí)的反應(yīng)時(shí)間秒.

1)若志愿者未飲酒,且車速為16米/秒,則該汽車的剎車距離為

2)當(dāng)志愿者在喝下一瓶啤酒半小時(shí)后,以16米/秒的速度駕車行駛,測(cè)得剎車距離為59.2米,此時(shí)該志愿者的反應(yīng)時(shí)間是 秒.

3)假如該志愿者以10米/秒的車速行駛,飲酒后反應(yīng)時(shí)間是第(2)題求出來的量,則飲酒后的剎車距離與未飲酒時(shí)的剎車距離相比增加了多少?

4)假如你駕駛該型號(hào)的汽車以16 米/秒的速度行駛, 發(fā)現(xiàn)正前方46米處停了一輛車,假設(shè)你反應(yīng)時(shí)間是1. 3.問這兩輛車是否會(huì)發(fā)生追尾”? 請(qǐng)通過計(jì)算加以說明.

【答案】(1)33.6;(2)2.1;(3)未飲酒時(shí): S=15,飲酒后: S=31,增加了16米;(4)追尾

【解析】

1)把k=0.1,t=0.5v=16代入計(jì)算即可得到剎車距離;
2)把k=0.1,v=16s=59.2代入所給關(guān)系式可得t的值;
3)把k=0.1v=10,t=2.10.5分別代入所給關(guān)系式可得剎車距離,再相減即可;
4)把k=0.1,v=16t=1. 3代入所給關(guān)系式,求得的值即可.

解:(1)當(dāng)k=0.1,t=0.5,v=16時(shí),
s=0.5×16+0.1×162=33.6(米).
故答案為:33.6
2)當(dāng)k=0.1v=16,s=59.2時(shí),

59.2=16t+0.1×162,
解得t=2.1(秒).
故答案為2.1;
3)當(dāng)k=0.1,v=10t=2.1時(shí),s=2.1×10+0.1×102=31(米),
當(dāng)k=0.1,v=10,t=0.5時(shí),s=0.5×10+0.1×102=15(米),
31-15=16(米).
答:剎車距離將比未飲酒時(shí)增加16米;
4)當(dāng)k=0.1,v=16,t=1. 3時(shí),
=1.3×16+0.1×162=46.4(米),

4646.4
所以,這兩輛車會(huì)發(fā)生追尾

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系 中,函數(shù)的圖象與直線交于點(diǎn)A(3,m).

(1)求k、m的值;

(2)已知點(diǎn)P(n,n)(n>0),過點(diǎn)P作平行于軸的直線,交直線y=x-2于點(diǎn)M,過點(diǎn)P作平行于y軸的直線,交函數(shù) 的圖象于點(diǎn)N.

①當(dāng)n=1時(shí),判斷線段PM與PN的數(shù)量關(guān)系,并說明理由;

②若PN≥PM,結(jié)合函數(shù)的圖象,直接寫出n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某種商品的定價(jià)為每件20元,商場(chǎng)為了促銷,決定如果購買5件以上,則超過5件的部分打7折.

(1)求購買這種商品的貨款y (元)與購買數(shù)量x (件)之間的函數(shù)關(guān)系;

(2)當(dāng)x=3,x=6時(shí),貨款分別為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,D、E分別是AB、AC的中點(diǎn),BE2DE,延長(zhǎng)DE到點(diǎn)F,使得EFBE,連接CF

1)求證:四邊形BCFE是菱形;

2)若CE2,∠BCF120°,求菱形BCFE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)Pm,n)是反比例函數(shù)yx0)的圖象上的一動(dòng)點(diǎn),PAx軸,PBy軸,分別交反比例函數(shù)yx0)的圖象于點(diǎn)AB,點(diǎn)C是直線y2x上的一點(diǎn).

1)點(diǎn)A的坐標(biāo)為(   ,   ),點(diǎn)B的坐標(biāo)為(      );(用含m的代數(shù)式表示)

2)在點(diǎn)P運(yùn)動(dòng)的過程中,連接AB,證明:PAB的面積是一個(gè)定值,并求出這個(gè)定值;

3)在點(diǎn)P運(yùn)動(dòng)的過程中,以點(diǎn)P,AB,C為頂點(diǎn)的四邊形能否為平行四邊形?若能,求出此時(shí)m的值;若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,D為⊙O上一點(diǎn),點(diǎn)C在直徑BA的延長(zhǎng)線上,且∠CDA=∠CBD.

(1)求證:CD是⊙O的切線;

(2)過點(diǎn)B作⊙O的切線交CD的延長(zhǎng)線于點(diǎn)E,BC=6, .求BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】大家知道,它在數(shù)軸上表示5的點(diǎn)與原點(diǎn)(即表示0的點(diǎn))之間的距離.又如式子,它在數(shù)軸上的意義是表示6的點(diǎn)與表示3的點(diǎn)之間的距離.即點(diǎn)A、B在數(shù)軸上分別表示數(shù)a、b,則A、B兩點(diǎn)的距離可表示為:|AB|=.根據(jù)

以上信息,回答下列問題:

(1)數(shù)軸上表示2和5的兩點(diǎn)之間的距離是 ;數(shù)軸上表示-2和-5的兩點(diǎn)之間的距離是 .

(2)點(diǎn)A、B在數(shù)軸上分別表示實(shí)數(shù)x.

①用代數(shù)式表示A、B兩點(diǎn)之間的距;

②如果,求x的值.

(3)直接寫出代數(shù)式的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一個(gè)二次函數(shù)的圖象經(jīng)過A(0,﹣6)、B(4,﹣6)、C(6,0)三點(diǎn).

(1)求這個(gè)二次函數(shù)的解析式;

(2)分別聯(lián)結(jié)AC、BC,求tanACB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:AC為一條直線,OAC上一點(diǎn), OE、OF分別平分∠AOB和∠BOC.

(1)如圖:若∠AOB=120°,求∠EOF的大小;

(2)若∠AOB=60°,則∠EOF= _______ °;

(3)任意改變∠AOB的大小,∠EOF的大小會(huì)改變嗎?

查看答案和解析>>

同步練習(xí)冊(cè)答案