【題目】如圖:AC為一條直線,O是AC上一點, OE、OF分別平分∠AOB和∠BOC.
(1)如圖:若∠AOB=120°,求∠EOF的大小;
(2)若∠AOB=60°,則∠EOF= _______ °;
(3)任意改變∠AOB的大小,∠EOF的大小會改變嗎?
【答案】(1)90°;(2)90°;(3)不變.
【解析】
(1)先由∠AOB=120°,得∠COB=60°,再由OE,OF分別平分∠AOB,∠BOC,得∠EOB=60° ,∠BOF=30°,從而可得∠EOF的大。
(2)由∠AOB=60°,得∠COB=120°,再由OE,OF分別平分∠AOB,∠BOC,得∠EOB=30° ,∠BOF=60°,從而可得∠EOF的大;
(3)任意改變∠AOB的大小,先由點O是AC上一點,得出∠AOB+∠BOC=∠AOC=180°,再由OE,OF分別平分∠AOB,∠BOC,根據角平分線定義得出∠BOE=∠AOB,∠BOF=∠BOC,那么∠EOF=∠BOE+∠BOF=∠AOB+∠BOC=∠AOC=90°.
(1)∵∠AOB=120°,∴∠COB=180°-120°=60°
∵OE、OF分別平分∠AOB和∠BOC
∴∠EOB= ∠AOB=60° ,∠BOF= ∠BOC=30°
∴∠EOF=∠EOB+∠BOF=60°+30°=90°
(2) ∵∠AOB=60°,∴∠COB=180°-60°=120°
∵OE、OF分別平分∠AOB和∠BOC
∴∠EOB=∠AOB=30° ,∠BOF=∠BOC=60°
∴∠EOF=∠EOB+∠BOF=30°+60°=90°
(3)不變.
理由是:∵OE平分∠AOB,OF平分∠BOC,
∴∠BOE=∠AOB,
∴∠BOF=∠BOC,
∴∠EOF=∠BOE+∠BOF=∠AOB+∠BOC=(∠AOB+∠BOC)=×180°=90°.
科目:初中數學 來源: 題型:
【題目】司機在駕駛汽車時,發(fā)現緊急情況到踩下剎車需要一段時間,這段時間叫反應時間.之后還會繼續(xù)行駛一段距離.我們把司機從發(fā)現緊急情況到汽車停止所行駛的這段距離叫“剎車距離”(如圖).
已知汽車的剎車距離(單位:米)與車速(單位:米/秒)之間有如下關系:,其中為司機的反應時間(單位:秒) ,為制動系數.某機構為測試司機飲酒后剎車距離的變化,對某種型號的汽車進行了“醉漢”駕車測試,已知該型號汽車的制動系數,并測得志愿者在未飲酒時的反應時間秒.
(1)若志愿者未飲酒,且車速為16米/秒,則該汽車的剎車距離為 米 .
(2)當志愿者在喝下一瓶啤酒半小時后,以16米/秒的速度駕車行駛,測得剎車距離為59.2米,此時該志愿者的反應時間是 秒.
(3)假如該志愿者以10米/秒的車速行駛,飲酒后反應時間是第(2)題求出來的量,則飲酒后的剎車距離與未飲酒時的剎車距離相比增加了多少?
(4)假如你駕駛該型號的汽車以16 米/秒的速度行駛, 發(fā)現正前方46米處停了一輛車,假設你反應時間是1. 3秒.問這兩輛車是否會發(fā)生“追尾”? 請通過計算加以說明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在邊長為6的正方形ABCD中,E是邊CD的中點,將△ADE沿AE對折至△AFE,延長EF交邊BC于點G,連接AG.
(1)求證:△ABG≌△AFG;(2)求BG的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】商場經營的某品牌童裝,4月的銷售額為20000元,為擴大銷量,5月份商場對這種童裝打9折銷售,結果銷量增加了50件,銷售額增加了7000元.
(1)求該童裝4月份的銷售單價;
(2)若4月份銷售這種童裝獲利8000元,6月全月商場進行“六一”兒童節(jié)促銷活動.童裝在4月售價的基礎上一律打8折銷售,若該童裝的成本不變,則銷量至少為多少件,才能保證6月的利潤比4月的利潤至少增長25%?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB為半圓O的直徑,C為BA延長線上一點,CD切半圓O于點D。連結OD,作BE⊥CD于點E,交半圓O于點F。已知CE=12,BE=9,
(1)求證:△COD∽△CBE;
(2)求半圓O的半徑的長
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙兩大型超市為了吸引顧客,都舉行有獎酬賓活動,凡購物滿200元,均可得到一次抽獎的機會,在一個紙盒里裝有2個紅球和2個白球,除顏色外其它都相同,抽獎者一次從中摸出兩個球,根據球的顏色決定送禮金券(在他們超市使用時,與人民幣等值)的多少(如下表).
甲超市.
球 | 兩 紅 | 一紅一白 | 兩 白 |
禮金券(元) | 20 | 50 | 20 |
乙超市:
球 | 兩 紅 | 一紅一白 | 兩 白 |
禮金券(元) | 50 | 20 | 50 |
【1】(1)用樹狀圖表示得到一次摸獎機會時中禮金券的所有情況;
【2】(2)如果只考慮中獎因素,你將會選擇去哪個超市購物?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】九年級(1)班開展了為期一周的“敬老愛親”社會活動,并根據學生做家務的時間來評價他們在活動中的表現.老師調查了全班50名學生在這次活動中做家務的時間,并將統(tǒng)計的時間(單位:小時)分成5組:A:0.5≤x<1,B:1≤x<1.5,C:1.5≤x<2,D:2≤x<2.5,E:2.5≤x<3,制作成兩幅不完整的統(tǒng)計圖(如圖).
請根據圖中提供的信息,解答下列問題:
(1)這次活動中學生做家務時間的中位數所在的組是____________;
(2)補全頻數分布直方圖;
(3)該班的小明同學這一周做家務2小時,他認為自己做家務的時間比班里一半以上的同學多,你認為小明的判斷符合實際嗎?請用適當的統(tǒng)計知識說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com