【題目】已知:如圖1,四邊形ABCD內(nèi)接于⊙O,AC⊥BD于點(diǎn)P,OE⊥AB于點(diǎn)E,F(xiàn)為BC延長(zhǎng)線上一點(diǎn).
(1)求證:∠DCF=∠DAB;
(2)求證:;
(3)當(dāng)圖1中點(diǎn)P運(yùn)動(dòng)到圓外時(shí),即AC、BD的延長(zhǎng)線交于點(diǎn)P,且∠P=90°時(shí)(如圖2所示),(2)中的結(jié)論是否成立?如果成立請(qǐng)給出你的證明,如果不成立請(qǐng)說(shuō)明理由.
【答案】(1)詳見解析;(2);(3)見解析
【解析】
(1)利用三角形外角的性質(zhì)可以得到∠DCF=∠CBD+∠CDB,再根據(jù)∠CBD=∠DAC,∠CDB=∠CAB即可得到結(jié)論;
(2)連接AO并延長(zhǎng)交⊙O與點(diǎn)G,連接GB,利用三角形中位線的性質(zhì)即可得到 .
(3)結(jié)論仍然成立,證明方法同(2).
(1)證明:∵∠DCF是△BDC的外角,
∴∠DCF=∠CBD+∠CDB.
∵∠CBD=∠DAC,∠CDB=∠CAB,
∴∠DCF=∠DAB.
(2)解:連接AO并延長(zhǎng)交⊙O于點(diǎn)G,連接GB,
∵AG過(guò)O點(diǎn),為圓O直徑,
∴∠ABG=90°.
∵OE⊥AB于點(diǎn)E,
∴E為AB中點(diǎn).
∴.
∵AC⊥BD,
∴∠APD=90°.
∴∠DAP+∠ADP=90°.
∵∠BAG+∠G=90°.且∠ADP=∠G,
∴∠DAP=∠BAG.
∴CD=BG.
∴.
(3)解:(2)的結(jié)論成立.
證明:連接AO并延長(zhǎng)交⊙O于點(diǎn)G,連接GB,
∴∠ABG=90°.
∵OE⊥AB于點(diǎn)E,
∴E為AB中點(diǎn).
∴.
由(2)證明可知,∠PDA=∠G,
∴∠PAD=∠BAG.
∴CD=BG.
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,C、D是以AB為直徑的⊙O上的點(diǎn),,弦CD交AB于點(diǎn)E.
(1)當(dāng)PB是⊙O的切線時(shí),求證:∠PBD=∠DAB;
(2)求證:BC2﹣CE2=CEDE;
(3)已知OA=4,E是半徑OA的中點(diǎn),求線段DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)y1=x(x≥0),y2=(x>0)的圖象如圖所示,下列結(jié)論:
①兩函數(shù)圖象的交點(diǎn)坐標(biāo)為A(2,2);
②當(dāng)x>2時(shí),y2>y1;
③直線x=1分別與兩個(gè)函數(shù)圖象相交于B,C兩點(diǎn),則線段BC的長(zhǎng)為3;
④當(dāng)x逐漸增大時(shí),y1的值隨x的增大而增大,y2的值隨x的增大而減少,其中正確的是( )
A. ①② B. ①③ C. ②④ D. ①③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,已知一次函數(shù)(k≠0)的圖象與x軸、y軸分別交于A、B兩點(diǎn),且與反比例函數(shù)(m≠0)的圖象在第一象限交于C點(diǎn),CD垂直于x軸,垂足為D.若OA=OB=OD=1.
(1)求點(diǎn)A、B、D的坐標(biāo);
(2)求一次函數(shù)和反比例函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,弦CD⊥AB于點(diǎn)E,AM是△ACD的外角∠DAF的平分線.
(1)求證:AM是⊙O的切線;
(2)若∠D = 60°,AD = 2,射線CO與AM交于N點(diǎn),請(qǐng)寫出求ON長(zhǎng)的思路.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在⊙O中,直徑AB垂直弦CD于E,過(guò)點(diǎn)A作∠DAF=∠DAB,過(guò)點(diǎn)D作AF的垂線,垂足為F,交AB的延長(zhǎng)線于點(diǎn)P,連接CO并延長(zhǎng)交⊙O于點(diǎn)G,連接EG.
(1)求證:DF是⊙O的切線;
(2)若AD=DP,OB=3,求的長(zhǎng)度;
(3)若DE=4,AE=8,求線段EG的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是平面直角坐標(biāo)中的一點(diǎn),點(diǎn)是軸負(fù)半軸上一動(dòng)點(diǎn),聯(lián)結(jié),并以為邊在軸上方作矩形,且滿足,設(shè)點(diǎn)的橫坐標(biāo)是,如果用含的代數(shù)式表示點(diǎn)的坐標(biāo),那么點(diǎn)的坐標(biāo)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠B=90°,AB=12,BC=24,動(dòng)點(diǎn)P從點(diǎn)A開始沿邊AB向終點(diǎn)B以每秒2個(gè)單位長(zhǎng)度的速度移動(dòng),動(dòng)點(diǎn)Q從點(diǎn)B開始沿邊BC以每秒4個(gè)單位長(zhǎng)度的速度向終點(diǎn)C移動(dòng),如果點(diǎn)P、Q分別從點(diǎn)A、B同時(shí)出發(fā),那么△PBQ的面積S隨出發(fā)時(shí)間t(s)如何變化?寫出函數(shù)關(guān)系式及t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,,是雙曲線與直線的兩個(gè)交點(diǎn),、都垂直于軸,垂足為、,那么四邊形的面積是( )
A. 3 B. 6 C. 9 D. 12
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com