【題目】如圖,在⊙O中,直徑AB垂直弦CD于E,過點A作∠DAF=∠DAB,過點D作AF的垂線,垂足為F,交AB的延長線于點P,連接CO并延長交⊙O于點G,連接EG.
(1)求證:DF是⊙O的切線;
(2)若AD=DP,OB=3,求的長度;
(3)若DE=4,AE=8,求線段EG的長.
【答案】(1)證明見解析(2)π(3)2
【解析】試題分析:(1)連接OD,由等腰三角形的性質得出∠DAB=∠ADO,再由已知條件得出∠ADO=∠DAF,證出OD∥AF,由已知DF⊥AF,得出DF⊥OD,即可得出結論;
(2)易得∠BOD=60°,再由弧長公式求解即可;
(3)連接DG,由垂徑定理得出DE=CE=4,得出CD=8,由勾股定理求出DG,再由勾股定理求出EG即可.
試題解析:(1)證明:連接OD,如圖1所示:
∵OA=OD,
∴∠DAB=∠ADO,
∵∠DAF=∠DAB,
∴∠ADO=∠DAF,
∴OD∥AF,
又∵DF⊥AF,
∴DF⊥OD,
∴DF是⊙O的切線;
(2)∵AD=DP
∴∠P=∠DAF=∠DAB =x0
∴∠P+∠DAF+∠DAB =3xo=90O
∴x0=300
∴∠BOD=60°,
∴的長度=
(3)解:連接DG,如圖2所示:
∵AB⊥CD,
∴DE=CE=4,
∴CD=DE+CE=8,
設OD=OA=x,則OE=8﹣x,
在Rt△ODE中,由勾股定理得:OE2+DE2=OD2,
即(8﹣x)2+42=x2,
解得:x=5,
∴CG=2OA=10,
∵CG是⊙O的直徑,
∴∠CDG=90°,
∴DG==6,
∴EG==.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,點D從點C出發(fā)沿CA方向以4cm/秒的速度向點A勻速運動,同時點E從點A出發(fā)沿AB方向以2cm/秒的速度向點B勻速運動,當其中一個點到達終點時,另一個點也隨之停止運動.設點D、E運動的時間是t秒(0<t≤15).過點D作DF⊥BC于點F,連接DE,EF.
(1)求證:AE=DF;
(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應的t值,如果不能,說明理由;
(3)當t為何值時,△DEF為直角三角形?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】人民商場準備購進甲、乙兩種牛奶進行銷售,若甲種牛奶的進價比乙種牛奶的進價每件少5元,其用90元購進甲種牛奶的數(shù)量與用100元購進乙種牛奶的數(shù)量相同.
(1)求甲種牛奶、乙種牛奶的進價分別是多少元?
(2)若該商場購進甲種牛奶的數(shù)量是乙種牛奶的3倍少5件,該商場甲種牛奶的銷售價格為49元,乙種牛奶的銷售價格為每件55元,則購進的甲、乙兩種牛奶全部售出后,可使銷售的總利潤(利潤=售價﹣進價)等于371元,請通過計算求出該商場購進甲、乙兩種牛奶各自多少件?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,E、F、G、H分別是BD、BC、AC、AD的中點,且AB=CD.結論:①EG⊥FH;②四邊形EFGH是矩形;③HF平分∠EHG;④EGBC;⑤四邊形EFGH的周長等于2AB.其中正確的個數(shù)是( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(2013年四川廣安8分)某商場籌集資金12.8萬元,一次性購進空調、彩電共30臺.根據(jù)市場需要,這些空調、彩電可以全部銷售,全部銷售后利潤不少于1.5萬元,其中空調、彩電的進價和售價見表格.
空調 | 彩電 | |
進價(元/臺) | 5400 | 3500 |
售價(元/臺) | 6100 | 3900 |
設商場計劃購進空調x臺,空調和彩電全部銷售后商場獲得的利潤為y元.
(1)試寫出y與x的函數(shù)關系式;
(2)商場有哪幾種進貨方案可供選擇?
(3)選擇哪種進貨方案,商場獲利最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,AB=4,點E在對角線AC上,連接BE、DE,
(1)如圖1,作EM⊥AB交AB于點M,當AE=時,求BE的長;
(2)如圖2,作EG⊥BE交CD于點G,求證:BE=EG;
(3)如圖3,作EF⊥BC交BC于點F,設BF=x,△BEF的面積為y.當x取何值時,y取得最大值,最大值是多少?當△BEF的面積取得最大值時,在直線EF取點P,連接BP、PC,使得∠BPC=45°,求EP的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在Rt△ABC中,AC=8cm,BC=6cm,D、E分別為邊AB、BC的中點,連結DE,點P從點A出發(fā),沿折線AD﹣DE運動,到點E停止,點P在AD上以5cm/s的速度運動,在DE上以1cm/s的速度運動,過點P作PQ⊥AC于點Q,以PQ為邊作正方形PQMN.設點P的運動時間為t(s).
(1)當點P在線段DE上運動時,線段DP的長為_____cm.(用含t的代數(shù)式表示)
(2)當正方形PQMN與△ABC重疊部分圖形為五邊形時,設五邊形的面積為S(cm2),求S與t的函數(shù)關系式,并寫出t的取值范圍.
(3)如圖2,若點O在線段BC上,且CO=1,以點O為圓心,1cm長為半徑作圓,當點P開始運動時,⊙O的半徑以0.2cm/s的速度開始不斷增大,當⊙O與正方形PQMN的邊所在直線相切時,求此時的t值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“十·一”黃金周期間,武漢動物園在7天假期中每天旅游的人數(shù)變化如下表(正數(shù)表示比前一天多的人數(shù),負數(shù)表示比前一天少的人數(shù))
日期 | 10月1日 | 10月2日 | 10月3日 | 10月4日 | 10月5日 | 10月6日 | 10月7日 |
人數(shù)變化單位:萬人 | +1.6 | +0.8 | +0.4 | -0.4 | -0.8 | +0.2 | -1.2 |
(1)若9月30日的游客人數(shù)記為,請用的代數(shù)式表示10月2日的游客人數(shù)?
(2)請判斷七天內游客人數(shù)最多的是哪天?請說明理由。
(3)若9月30日的游客人數(shù)為2萬人,門票每人10元。問黃金周期間武漢動物園門票收入是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知數(shù)軸上有三個點,它們表示的數(shù)分別是.
(1)填空: , .
(2)若點以每秒個單位長度的速度向左運動,同時,點和點分別以每秒個單位長度和個單位長度的速度向右運動.試探索:的值是否隨著時間的變化而改變? 請說明理由。
(3)現(xiàn)有動點都從點出發(fā),點以每秒個單位長度的速度向終點移動:當點移動到點時,點才從點出發(fā),并以每秒個單位長度的速度向右移動,且當點到達點時,點就停止移動.設點移動的時間為秒,請試用含的式了表示兩點間的距離(不必寫過程,直接寫出結果).
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com