【題目】如圖,在中,,以為圓心,任意長為半徑畫弧分別交于點,再分別以為圓心,大于的長為半徑畫弧,兩弧交于點,連接并延長交于點,則下列結(jié)論一定成立的個數(shù)為

的平分線;

②若,則;

;

④點的垂直平分線上.

A.1B.2C.3D.4

【答案】C

【解析】

連接PM,PN,證明APNAPM,即可判斷①;由,,得:∠BAC=60°,結(jié)合的平分線,得∠BAD=ABD,即可判斷②;過點DDHAB,由,得:,結(jié)合CD=HD,即可判斷③;根據(jù)垂直平分線性質(zhì)定理的逆定理,即可判斷④.

連接PM,PN,

APNAPM中,

,

APNAPM(SSS),

∴∠PAN=PAM

的平分線,

故①正確;

∵在中,,,

∴∠BAC=60°,

的平分線,

∴∠BAD=30°,

∴∠BAD=ABD,

,

故②正確;

過點DDHAB,

的平分線,,

CD=HD

∵∠C=BHD=90°

,

,即:,

,

故③正確;

AD/span>BD不一定相等,

不一定在的垂直平分線上,

故④錯誤,

故選C.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,∠C=90°AD是∠BAC的平分線,DEABE,FAC上,且BD=DF

1)求證:CF=EB;

2)試判斷ABAFEB之間存在的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知直線ABCD,將一塊三角板EFG如圖1所示,EFG的邊與直線AB、CD分別相交于M,N兩點,∠F=90°,∠E=30°.

(1)求證:EMB+DNG=90°

(2)將另一塊三角板MPQ如圖2放置,MPQ的邊PQ、PM分別與直線CD相交于點R,EFGEG相交于點O,P=90°,PMQ=45°,直接寫出∠PMB與∠PRD的數(shù)量關(guān)系:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】△ABC和△DEF的頂點AD重合,已知∠B=90°,∠BAC=30°,BC=6,∠FDE=90°,DF=DE=4.

(1)如圖①,EF與邊AC、AB分別交于點G、H,且FG=EH.設(shè),在射線DF上取一點P,記: ,聯(lián)結(jié)CP設(shè)△DPC的面積為y,求y關(guān)于x的函數(shù)解析式,并寫出定義域;

(2)在(1)的條件下,求當x為何值時PC//AB;

(3)如圖②,先將△DEF繞點D逆時針旋轉(zhuǎn),使點E恰好落在AC邊上,在保持DE邊與AC邊完全重合的條件下,使△DEF沿著AC方向移動當△DEF移動到什么位置時,以線段AD、FCBC的長度為邊長的三角形是直角三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某自行車廠計劃一周生產(chǎn)自行車2100輛,平均每天計制生產(chǎn)300輛,實際每天生產(chǎn)量與計劃量相比有出入,下表是某周的生產(chǎn)情況.(超過每天計劃生產(chǎn)數(shù)記為正,不足每天計劃生產(chǎn)數(shù)記為負)

星期

每天超出計劃的量數(shù)

1)該廠星期四實際生產(chǎn)自行車______

2)該廠本周實際每天平均生產(chǎn)多少輛自行車?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列命題:

,則;

,則一元二次方程有兩個不相等的實數(shù)根;

,則一元二次方程有兩個不相等的實數(shù)根;

,則二次函數(shù)的圖象與坐標軸的公共點的個數(shù)是23

其中正確的是

A. 只有 B. 只有 C. 只有 D. 只有

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校利用二維碼進行學生學號統(tǒng)一編排.黑色小正方形表示1,白色小正方形表示0,將每一行數(shù)字從左到右依次記為a,b,cd,那么利用公式a×23-b×22-c×21+d計算出每一行的數(shù)據(jù).第一行表示年級,第二行表示班級,如圖1所示,第一行數(shù)字從左往右依次是1,0,01,則表示的數(shù)據(jù)為1×23+0×22+0×21+1=9,計作09,第二行數(shù)字從左往右依次是1,0,1,0,則表示的數(shù)據(jù)為1×23+0×22+1×21=10,計作10,以此類推,圖1代表的統(tǒng)一學號為091034,表示9年級10班34號.小明所對應的二維碼如圖2所示,則他的編號是_______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:ABC在直角坐標平面內(nèi),三個頂點的坐標分別為A03)、B34)、C2,2)(正方形網(wǎng)格中每個小正方形的邊長是一個單位長度).

1ABC向下平移4個單位長度得到的A1B1C1,點C1的坐標是

2)以點B為位似中心,在網(wǎng)格內(nèi)畫出A2B2C2,使A2B2C2ABC位似,且位似比為21,點C2的坐標是 ;(畫出圖形)

3A2B2C2的面積是 平方單位.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點A(﹣4,a),B(﹣1,2)是一次函數(shù)y1=kx+b與反比例函數(shù)m0圖象的兩個交點,ACx軸于C.

(1)求一次函數(shù)和反比例函數(shù)的解析式;

(2)若P是直線AB上的一點,連接PC,若PCA的面積等于,求點P的坐標.

查看答案和解析>>

同步練習冊答案