(四)鞏固深化,反饋矯正:
(1)課本P22第2題
(2)判斷下列函數(shù)f(x)與g(x)是否表示同一個(gè)函數(shù),說(shuō)明理由?
① f ( x ) = (x -1) 0;g ( x ) = 1
② f ( x ) = x; g ( x ) =
③ f ( x ) = x 2;f ( x ) = (x + 1) 2
④ f ( x ) = | x | ;g ( x ) =
(3)求下列函數(shù)的定義域
①
②
③ f(x) = +
④ f(x) =
⑤
(三)質(zhì)疑答辯,排難解惑,發(fā)展思維。
1、如何求函數(shù)的定義域
例1:已知函數(shù)f (x) = +
(1)求函數(shù)的定義域;
(2)求f(-3),f ()的值;
(3)當(dāng)a>0時(shí),求f(a),f(a-1)的值.
分析:函數(shù)的定義域通常由問(wèn)題的實(shí)際背景確定,如前所述的三個(gè)實(shí)例.如果只給出解析式y=f(x),而沒(méi)有指明它的定義域,那么函數(shù)的定義域就是指能使這個(gè)式子有意義的實(shí)數(shù)的集合,函數(shù)的定義域、值域要寫成集合或區(qū)間的形式.
解:略
例2、設(shè)一個(gè)矩形周長(zhǎng)為80,其中一邊長(zhǎng)為x,求它的面積關(guān)于x的函數(shù)的解析式,并寫出定義域.
分析:由題意知,另一邊長(zhǎng)為,且邊長(zhǎng)為正數(shù),所以0<x<40.
所以s= = (40-x)x (0<x<40)
引導(dǎo)學(xué)生小結(jié)幾類函數(shù)的定義域:
(1)如果f(x)是整式,那么函數(shù)的定義域是實(shí)數(shù)集R .
(2)如果f(x)是分式,那么函數(shù)的定義域是使分母不等于零的實(shí)數(shù)的集合 .
(3)如果f(x)是二次根式,那么函數(shù)的定義域是使根號(hào)內(nèi)的式子大于或等于零的實(shí)數(shù)的集合.
(4)如果f(x)是由幾個(gè)部分的數(shù)學(xué)式子構(gòu)成的,那么函數(shù)定義域是使各部分式子都有意義的實(shí)數(shù)集合.(即求各集合的交集)
(5)滿足實(shí)際問(wèn)題有意義.
鞏固練習(xí):課本P22第1
2、如何判斷兩個(gè)函數(shù)是否為同一函數(shù)
例3、下列函數(shù)中哪個(gè)與函數(shù)y=x相等?
(1)y = ()2 ; (2)y = () ;
(3)y = ; (4)y=
分析:
1 構(gòu)成函數(shù)三個(gè)要素是定義域、對(duì)應(yīng)關(guān)系和值域.由于值域是由定義域和對(duì)應(yīng)關(guān)系決定的,所以,如果兩個(gè)函數(shù)的定義域和對(duì)應(yīng)關(guān)系完全一致,即稱這兩個(gè)函數(shù)相等(或?yàn)橥缓瘮?shù))
2 兩個(gè)函數(shù)相等當(dāng)且僅當(dāng)它們的定義域和對(duì)應(yīng)關(guān)系完全一致,而與表示自變量和函數(shù)值的字母無(wú)關(guān)。
解:(略)
課本P21例2
(二)研探新知
1、函數(shù)的有關(guān)概念
(1)函數(shù)的概念:
設(shè)A、B是非空的數(shù)集,如果按照某個(gè)確定的對(duì)應(yīng)關(guān)系f,使對(duì)于集合A中的任意一個(gè)數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對(duì)應(yīng),那么就稱f:A→B為從集合A到集合B的一個(gè)函數(shù)(function).
記作: y=f(x),x∈A.
其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域(domain);與x的值相對(duì)應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(x)| x∈A }叫做函數(shù)的值域(range).
注意:
① “y=f(x)”是函數(shù)符號(hào),可以用任意的字母表示,如“y=g(x)”;
②函數(shù)符號(hào)“y=f(x)”中的f(x)表示與x對(duì)應(yīng)的函數(shù)值,一個(gè)數(shù),而不是f乘x.
(2)構(gòu)成函數(shù)的三要素是什么?
定義域、對(duì)應(yīng)關(guān)系和值域
(3)區(qū)間的概念
①區(qū)間的分類:開(kāi)區(qū)間、閉區(qū)間、半開(kāi)半閉區(qū)間;
②無(wú)窮區(qū)間;
③區(qū)間的數(shù)軸表示.
(4)初中學(xué)過(guò)哪些函數(shù)?它們的定義域、值域、對(duì)應(yīng)法則分別是什么?
通過(guò)三個(gè)已知的函數(shù):y=ax+b (a≠0)
y=ax2+bx+c (a≠0)
y= (k≠0)
比較描述性定義和集合,與對(duì)應(yīng)語(yǔ)言刻畫(huà)的定義,談?wù)勼w會(huì)。
師:歸納總結(jié)
2、教學(xué)用具:投影儀 .
1、學(xué)法:學(xué)生通過(guò)自學(xué)、思考、交流、討論和概括,從而更好地完成本節(jié)課的教學(xué)目標(biāo) .
重點(diǎn):理解函數(shù)的模型化思想,用集合與對(duì)應(yīng)的語(yǔ)言來(lái)刻畫(huà)函數(shù);
難點(diǎn):符號(hào)“y=f(x)”的含義,函數(shù)定義域和值域的區(qū)間表示;
3、情態(tài)與價(jià)值,使學(xué)生感受到學(xué)習(xí)函數(shù)的必要性的重要性,激發(fā)學(xué)習(xí)的積極性。
2、過(guò)程與方法:
(1)通過(guò)實(shí)例,進(jìn)一步體會(huì)函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型,在此基礎(chǔ)上學(xué)習(xí)用集合與對(duì)應(yīng)的語(yǔ)言來(lái)刻畫(huà)函數(shù),體會(huì)對(duì)應(yīng)關(guān)系在刻畫(huà)函數(shù)概念中的作用;
(2)了解構(gòu)成函數(shù)的要素;
(3)會(huì)求一些簡(jiǎn)單函數(shù)的定義域和值域;
(4)能夠正確使用“區(qū)間”的符號(hào)表示某些函數(shù)的定義域;
1、 知識(shí)與技能:
函數(shù)是描述客觀世界變化規(guī)律的重要數(shù)學(xué)模型.高中階段不僅把函數(shù)看成變量之間
的依賴關(guān)系,同時(shí)還用集合與對(duì)應(yīng)的語(yǔ)言刻畫(huà)函數(shù),高中階段更注重函數(shù)模型化的思想與意識(shí).
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com