0  444944  444952  444958  444962  444968  444970  444974  444980  444982  444988  444994  444998  445000  445004  445010  445012  445018  445022  445024  445028  445030  445034  445036  445038  445039  445040  445042  445043  445044  445046  445048  445052  445054  445058  445060  445064  445070  445072  445078  445082  445084  445088  445094  445100  445102  445108  445112  445114  445120  445124  445130  445138  447090 

2、有一個(gè)容量為45的樣本數(shù)據(jù),分組后各組的頻數(shù)如下:

根據(jù)累積頻率分布,估計(jì)不大于27.5的數(shù)據(jù)約為總體的   AA.91%  B.92%  C.95%  D.30%

試題詳情

1、一個(gè)動(dòng)點(diǎn)在三棱錐體內(nèi)等可能出現(xiàn),則該動(dòng)點(diǎn)與下底面構(gòu)成的三棱錐的體積超過原三棱錐體積的而不足原三棱錐體積的的概率為D A、; B、;     C、;      D、;

試題詳情

21. (I)證: 三棱柱中,    

   又平面,且平面, 平面              

   (II)證: 三棱柱中, 中

   是等腰三角形 ,E是等腰底邊的中點(diǎn),

    又依條件知 且

   由①,②,③得平面EDB        

   (III)解: 平面, 且不平行,故延長,ED后必相交, 設(shè)交點(diǎn)為E,連接EF,如下圖是所求的二面角       

   依條件易證明  為中點(diǎn), A為中點(diǎn)

   即     又平面EFB,  是所求的二面角的平面角    , E為等腰直角三角形底邊中點(diǎn),

   故所求的二面角的大小為       

22  證明  (1)當(dāng)n=1時(shí),42×1+1+31+2=91能被13整除

(2)假設(shè)當(dāng)n=k時(shí),42k+1+3k+2能被13整除,則當(dāng)n=k+1時(shí),

42(k+1)+1+3k+3=42k+1·42+3k+2·3-42k+1·3+42k+1·3

=42k+1·13+3·(42k+1+3k+2?)

∵42k+1·13能被13整除,42k+1+3k+2能被13整除

∴當(dāng)n=k+1時(shí)也成立 

由①②知,當(dāng)n∈N*時(shí),42n+1+3n+2能被13整除 

試題詳情

20. 解:(I)設(shè)“甲隊(duì)以3:0獲勝”為事件A,則   

   (II)設(shè)“甲隊(duì)獲得總冠軍”為事件B,

   則事件B包括以下結(jié)果:3:0;3:1;3:2三種情況

   若以3:0勝,則;                

   若以3:1勝,則               

   若以3:2勝,則              

所以,甲隊(duì)獲得總冠軍的概率為

試題詳情

19. 解:(Ⅰ)證明:CD//C1B1,又BD=BC=B1C1,∴ 四邊形BDB1C1是平行四邊形,

∴BC1//DB1.又DB1平面AB1D,BC1平面AB1D,∴直線BC1//平面AB1D.

(Ⅱ)解:過B作BE⊥AD于E,連結(jié)EB1,∵B1B⊥平面ABD,∴B1E⊥AD ,

∴∠B1EB是二面角B1-AD-B的平面角,∵BD=BC=AB,∴E是AD的中點(diǎn), 在Rt△B1BE中,  ∴∠B1EB=60°。即二面角B1-AD-B的大小為60°

試題詳情

21、直三棱柱ABC-A1B1C1中,,E是A1C的中點(diǎn),且交AC于D,。(I)證明:平面;(II)證明:平面;

  (III)求平面與平面EDB所成的二面角的大小(僅考慮平面角為銳角的情況)。

22  用數(shù)學(xué)歸納法證明4+3n+2能被13整除,其中n∈N* 

試題詳情

20、某籃球職業(yè)聯(lián)賽總決賽在甲、乙兩支球隊(duì)之間進(jìn)行,比賽采用五局三勝制,即哪個(gè)隊(duì)先勝三場即可獲得總冠軍。已知在每一場比賽中,甲隊(duì)獲勝的概率均為,乙隊(duì)獲勝的概率均為。求:(I)甲隊(duì)以3:0獲勝的概率;(II)甲隊(duì)獲得總冠軍的概率。

試題詳情

19.如圖,正三棱柱ABC-A1B1C1的底面邊長的3,側(cè)棱AA1=D是CB延長線上一點(diǎn),且BD=BC.(Ⅰ)求證:直線BC1//平面AB1D;(Ⅱ)求二面角B1-AD-B的大;

試題詳情

18.等腰直角三角形ABC的三個(gè)頂點(diǎn)在同一球面上,∠BAC=90°,AB=AC=,若球心O到平面ABC的距離為1,則該球的半徑為     ;球的表面積為      。

試題詳情

16.正四棱錐一對(duì)角面面積是一個(gè)側(cè)面面積的倍,則側(cè)面與底面所成銳二面角等于 

  17.如右圖,等邊三角形ABC的邊長為4,D為BC中點(diǎn),

沿AD把△ADC折疊到△ADC′處,使二面角B-AD-C′為

60°,則折疊后點(diǎn)A到直線BC′的距離為      

二面角A-BC′-D的正切值為       。;2    

試題詳情


同步練習(xí)冊(cè)答案