0  443075  443083  443089  443093  443099  443101  443105  443111  443113  443119  443125  443129  443131  443135  443141  443143  443149  443153  443155  443159  443161  443165  443167  443169  443170  443171  443173  443174  443175  443177  443179  443183  443185  443189  443191  443195  443201  443203  443209  443213  443215  443219  443225  443231  443233  443239  443243  443245  443251  443255  443261  443269  447090 

21.解:(I)設(shè)該同學(xué)連對線的個數(shù)為y,得分為ξ,則y=0,1,2,4

      ∴ξ=0,2,4,8

        

 則ξ的分布列為

ξ
0
2
4
8
P




(II)Eξ=0×+2×+4×+8×=2, 答:該人得分的期望為2分

試題詳情

20.(1)解:記AC與BD的交點(diǎn)為O,連接OE

∵O,M分別是AC、EF的中點(diǎn),且四邊形ACEF是矩形,∴四邊形AOEM是平行四邊形,

∴AM//OE,   又OE平面BDE,AM平面BDE,∴AM//平面BDE

  (2)在平面AFD中過A作AS⊥DF,垂足為S,連接BS,

∵AB⊥AF,AB⊥AD,ADAF=A,∴AB⊥平面ADF.

又DF平面ADF,∴DF⊥AB,又DF⊥AS,ABAS=A,

∴DF⊥平面ABS.又BS平面ABS,∴DF⊥SB.

∴∠BSA是二面角A-DF-B的平面角.

在Rt△ASB中,AS

   ∴∠ASB=60°

試題詳情

22、已知點(diǎn)(an,an-1)在曲線f(x)=上, 且a1=1.(1)求f(x)的定義域;

(2)求證: (nN*)

(3)求證: 數(shù)列{an}前n項(xiàng)和 (n≥1, nN*)

15 方法一:觀察正三棱錐P–ABC,O為底面中心,不妨將底面正△ABC固定,頂點(diǎn)P運(yùn)動,相鄰兩側(cè)面所成二面角為∠AHC.當(dāng)PO→0時,面PAB→△OAB,面PBC→△OBC,∠AHC→π,當(dāng)PO→+∞時,∠AHC→∠ABC=.故<∠AHC <π,選A.

方法二:不妨設(shè)AB=2,PC= x,則x > OC =.等腰△PBC中,S△PBC =x·CH =·2·CH =,等腰△AHC中,sin.由x><1,∴<∠AHC<π.

19解:(1)甲經(jīng)過到達(dá)N,可分為兩步:第一步:甲從M經(jīng)過的方法數(shù):種;第二步:甲從到N的方法數(shù):種;所以:甲經(jīng)過的方法數(shù)為;

    所以:甲經(jīng)過的概率

 (2)由(1)知:甲經(jīng)過的方法數(shù)為:;乙經(jīng)過的方法數(shù)也為:;所以甲、乙兩人相遇經(jīng)點(diǎn)的方法數(shù)為: =81; 甲、乙兩人相遇經(jīng)點(diǎn)的概率

 (3)甲、乙兩人沿最短路徑行走,只可能在、、處相遇,他們在相遇的走法有種方法;所以:=164

甲、乙兩人相遇的概率

試題詳情

21.在一次語文測試中,有一道我國四大文學(xué)名著《水滸傳》、《三國演義》、《西游記》、《紅樓夢》與它們的作者的連線題,連對一個得2分,連錯一個不得分.(Ⅰ)求該同學(xué)得分的分布列;(Ⅱ)求該同學(xué)得分的數(shù)學(xué)期望.

試題詳情

20、已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=,AF=1,M是線段EF的中點(diǎn).(1)求證:AM//平面BDE;  (2)求二面角A-DF-B的大小.

試題詳情

19、如圖,在某城市中,M,N兩地之間有整齊的方格形道路網(wǎng),、是道路網(wǎng)中位于一條對角線上的4個交匯處,今在道路網(wǎng)M、N處的甲、乙兩人分別要到M,N處,他們分別隨機(jī)地選擇一條沿街的最短路徑,同時以每10分鐘一格的速度分別向N,M處行走,直到到達(dá)N,M為止。(1)求甲經(jīng)過的概率;

(2)求甲、乙兩人相遇經(jīng)點(diǎn)的概率;(3)求甲、乙兩人相遇的概率;

試題詳情

18.的值為        

試題詳情

17.已知數(shù)列{}的通項(xiàng)公式為,則+++=     

試題詳情

16. 設(shè)1+(1+x)2+(1+2x)2+(1+3x)2+…+(1+nx)2=a0+a1x+a2x2,則的值是CA.0  B.   C.1  D.2

試題詳情

15、在正三棱錐中,相鄰兩側(cè)面所成二面角的取值范圍是AA.  B. C.(0,)  D.

試題詳情


同步練習(xí)冊答案