7.若關(guān)于x的方程|x-6x+8|=a恰有兩個不等實根,則實數(shù)a的取值范圍是____________。
6. 對于滿足0≤p≤4的所有實數(shù)p,使不等式x+px〉4x+p-3成立的x的取值范圍是________。
5.等差數(shù)列{a}中,a=84,前n項和為S,已知S>0,S<0,則當n=______時,S最大。
4.已知{a}是等比數(shù)列,且a+a+a=18,a+a+a=-9,S=a+a+…+a,那么S等于_____。
A. 8 B. 16 C. 32 D. 48
3. 已知函數(shù)f(x)=log(x-4x+8), x∈[0,2]的最大值為-2,則a=_____。
A. B. C. 2 D. 4
2. 已知函數(shù)f(x)=|2-1|,a<b<c,且f(a)>f(c)>f(b),則_____。
A. a<0,b<0,c>0 B. a<0,b>0,c>0 C. 2<2 D. 2+2<2
1. 方程sin2x=sinx在區(qū)間(0,2π)內(nèi)解的個數(shù)是_____。
A. 1 B. 2 C. 3 D. 4
8. 建造一個容積為8m,深為2m的長方體無蓋水池,如果池底和池壁的造價每平方米分別為120元和80元,則水池的最低造價為___________。
[簡解]1小題:圖像法解方程,也可代入各區(qū)間的一個數(shù)(特值法或代入法),選C;
2小題:函數(shù)f(x)的對稱軸為2,結(jié)合其單調(diào)性,選A;
3小題:從反面考慮,注意應用特例,選B;
4小題:設tg=x (x>0),則+=,解出x=2,再用萬能公式,選A;
5小題:利用是關(guān)于n的一次函數(shù),設S=S=m,=x,則(,p)、(,q)、(x,p+q)在同一直線上,由兩點斜率相等解得x=0,則答案:0;
6小題:設cosx=t,t∈[-1,1],則a=t-t-1∈[-,1],所以答案:[-,1];
7小題:設高h,由體積解出h=2,答案:24;
8小題:設長x,則寬,造價y=4×120+4x×80+×80≥1760,答案:1760。
Ⅱ、示范性題組:
例1. 設a>0,a≠1,試求方程log(x-ak)=log(x-a)有實數(shù)解的k的范圍。(89年全國高考)
[分析]由換底公式進行換底后出現(xiàn)同底,再進行等價轉(zhuǎn)化為方程組,分離參數(shù)后分析式子特點,從而選用三角換元法,用三角函數(shù)的值域求解。
[解] 將原方程化為:log(x-ak)=log, 等價于 (a>0,a≠1)
∴ k=- ( ||>1 ),
設=cscθ, θ∈(-,0)∪(0, ),則 k=f(θ)=cscθ-|ctgθ|
當θ∈(-,0)時,f(θ)=cscθ+ctgθ=ctg<-1,故k<-1;
當θ∈(0, )時,f(θ)=cscθ-ctgθ=tg∈(0,1),故0<k<1;
綜上所述,k的取值范圍是:k<-1或0<k<1。
y
C C -ak -a a x |
[注] 求參數(shù)的范圍,分離參數(shù)后變成函數(shù)值域的問題,觀察所求函數(shù)式,引入新的變量,轉(zhuǎn)化為三角函數(shù)的值域問題,在進行三角換元時,要注意新的變量的范圍。一般地,此種思路可以解決有關(guān)不等式、方程、最大值和最小值、參數(shù)范圍之類的問題。本題還用到了分離參數(shù)法、三角換元法、等價轉(zhuǎn)化思想等數(shù)學思想方法。
另一種解題思路是采取“數(shù)形結(jié)合法”: 將原方程化為:log(x-ak)=log,等價于x-ak= (x-ak>0),設曲線C:y=x-ak,曲線C:y= (y>0),如圖所示。
由圖可知,當-ak>a或-a<-ak<0時曲線C與C有交點,即方程有實解。所以k的取值范圍是:k<-1或0<k<1。
還有一種思路是直接解出方程的根,然后對方程的根進行討論,具體過程是:原方程等價變形為后,解得:,所以>ak,即-k>0,通分得<0,解得k<-1或0<k<1。所以k的取值范圍是:k<-1或0<k<1。
例2. 設不等式2x-1>m(x-1)對滿足|m|≤2的一切實數(shù)m的取值都成立。求x的取值范圍。
[分析] 此問題由于常見的思維定勢,易把它看成關(guān)于x的不等式討論。然而,若變換一個角度以m為變量,即關(guān)于m的一次不等式(x-1)m-(2x-1)<0在[-2,2]上恒成立的問題。對此的研究,設f(m)=(x-1)m-(2x-1),則問題轉(zhuǎn)化為求一次函數(shù)(或常數(shù)函數(shù))f(m)的值在[-2,2]內(nèi)恒為負值時參數(shù)x應該滿足的條件。
[解]問題可變成關(guān)于m的一次不等式:(x-1)m-(2x-1)<0在[-2,2] 恒成立,設f(m)=(x-1)m-(2x-1),
則
解得x∈(,)
[注] 本題的關(guān)鍵是變換角度,以參數(shù)m作為自變量而構(gòu)造函數(shù)式,不等式問題變成函數(shù)在閉區(qū)間上的值域問題。本題有別于關(guān)于x的不等式2x-1>m(x-1)的解集是[-2,2]時求m的值、關(guān)于x的不等式2x-1>m(x-1)在[-2,2]上恒成立時求m的范圍。
一般地,在一個含有多個變量的數(shù)學問題中,確定合適的變量和參數(shù),從而揭示函數(shù)關(guān)系,使問題更明朗化。或者含有參數(shù)的函數(shù)中,將函數(shù)自變量作為參數(shù),而參數(shù)作為函數(shù),更具有靈活性,從而巧妙地解決有關(guān)問題。
例3. 設等差數(shù)列{a}的前n項的和為S,已知a=12,S>0,S<0 。
①.求公差d的取值范圍; ②.指出S、S、…、S中哪一個值最大,并說明理由。(92年全國高考)
[分析] ①問利用公式a與S建立不等式,容易求解d的范圍;②問利用S是n的二次函數(shù),將S中哪一個值最大,變成求二次函數(shù)中n為何值時S取最大值的函數(shù)最值問題。
[解]① 由a=a+2d=12,得到a=12-2d,所以
S=12a+66d=12(12-2d)+66d=144+42d>0,
S=13a+78d=13(12-2d)+78d=156+52d<0。
解得:-<d<-3。
② S=na+n(n1-1)d=n(12-2d)+n(n-1)d
=[n-(5-)]-[(5-)]
因為d<0,故[n-(5-)]最小時,S最大。由-<d<-3得6<(5-)<6.5,故正整數(shù)n=6時[n-(5-)]最小,所以S最大。
[注] 數(shù)列的通項公式及前n項和公式實質(zhì)上是定義在自然數(shù)集上的函數(shù),因此可利用函數(shù)思想來分析或用函數(shù)方法來解決數(shù)列問題。也可以利用方程的思想,設出未知的量,建立等式關(guān)系即方程,將問題進行算式化,從而簡潔明快。由次可見,利用函數(shù)與方程的思想來解決問題,要求靈活地運用、巧妙的結(jié)合,發(fā)展了學生思維品質(zhì)的深刻性、獨創(chuàng)性。
本題的另一種思路是尋求a>0、a<0 ,即:由d<0知道a>a>…>a,由S=13a<0得a<0,由S=6(a+a)>0得a>0。所以,在S、S、…、S中,S的值最大。
例4. 如圖,AB是圓O的直徑,PA垂直于圓O所在平面,C是圓周上任一點,設∠BAC=θ,PA=AB=2r,求異面直線PB和AC的距離。
[分析] 異面直線PB和AC的距離可看成求直線PB上任意一點到AC的距離的最小值,從而設定變量,建立目標函數(shù)而求函數(shù)最小值。
P
M
A
H
B
D C |
[解] 在PB上任取一點M,作MD⊥AC于D,MH⊥AB于H,
設MH=x,則MH⊥平面ABC,AC⊥HD 。
∴MD=x+[(2r-x)sinθ]=(sin+1)x-4rsinθx+4rsinθ
=(sinθ+1)[x-]+
即當x=時,MD取最小值為兩異面直線的距離。
[注] 本題巧在將立體幾何中“異面直線的距離”變成“求異面直線上兩點之間距離的最小值”,并設立合適的變量將問題變成代數(shù)中的“函數(shù)問題”。一般地,對于求最大值、最小值的實際問題,先將文字說明轉(zhuǎn)化成數(shù)學語言后,再建立數(shù)學模型和函數(shù)關(guān)系式,然后利用函數(shù)性質(zhì)、重要不等式和有關(guān)知識進行解答。比如再現(xiàn)性題組第8題就是典型的例子。
例5. 已知△ABC三內(nèi)角A、B、C的大小成等差數(shù)列,且tgA·tgC=2+,又知頂點C的對邊c上的高等于4,求△ABC的三邊a、b、c及三內(nèi)角。
[分析]已知了一個積式,考慮能否由其它已知得到一個和式,再用方程思想求解。
[解] 由A、B、C成等差數(shù)列,可得B=60°;
由△ABC中tgA+tgB+tgC=tgA·tgB·tgC,得
tgA+tgC=tgB(tgA·tgC-1)= (1+)
設tgA、tgC是方程x-(+3)x+2+=0的兩根,解得x=1,x=2+
設A<C,則tgA=1,tgC=2+, ∴A=,C=
由此容易得到a=8,b=4,c=4+4。
[注]本題的解答關(guān)鍵是利用“△ABC中tgA+tgB+tgC=tgA·tgB·tgC”這一條性質(zhì)得到tgA+tgC,從而設立方程求出tgA和tgC的值,使問題得到解決。
例6. 若(z-x) -4(x-y)(y-z)=0,求證:x、y、z成等差數(shù)列。
[分析] 觀察題設,發(fā)現(xiàn)正好是判別式b-4ac=0的形式,因此聯(lián)想到構(gòu)造一個一元二次方程進行求解。
[證明] 當x=y(tǒng)時,可得x=z, ∴x、y、z成等差數(shù)列;
當x≠y時,設方程(x-y)t-(z-x)t+(y-z)=0,由△=0得t=t,并易知t=1是方程的根。
∴t·t==1 , 即2y=x+z , ∴x、y、z成等差數(shù)列
[注]一般地,題設條件中如果已經(jīng)具備或經(jīng)過變形整理后具備了“x+x=a、x·x=b”的形式,則可以利用根與系數(shù)的關(guān)系構(gòu)造方程;如果具備b-4ac≥0或b-4ac≤0的形式,可以利用根的判別式構(gòu)造一元二次方程。這種方法使得非方程問題用方程思想來解決,體現(xiàn)了一定的技巧性,也是解題基本方法中的一種“構(gòu)造法”。
例7. △ABC中,求證:cosA·cosB·cosC≤ 。
[分析]考慮首先使用三角公式進行變形,結(jié)合三角形中有關(guān)的性質(zhì)和定理,主要是運用“三角形的內(nèi)角和為180°”。變形后再通過觀察式子的特點而選擇和發(fā)現(xiàn)最合適的方法解決。
[證明] 設k=cosA·cosB·cosC=[cos(A+B)+cos(A-B)]·cosC=[-cosC+cos(A-B)]cosC
整理得:cosC-cos(A-B)·cosC+2k=0,即看作關(guān)于cosC的一元二次方程。
∴ △=cos(A-B)-8k≥0 即 8k≤cos(A-B)≤1
∴ k≤即cosA·cosB·cosC≤
[注]本題原本是三角問題,引入?yún)?shù)后,通過三角變形,發(fā)現(xiàn)了其等式具有“二次”特點,于是聯(lián)想了一元二次方程,將問題變成代數(shù)中的方程有實解的問題,這既是“方程思想”,也體現(xiàn)了“判別式法”、“參數(shù)法”。
此題的另外一種思路是使用“放縮法”,在放縮過程中也體現(xiàn)了“配方法”,具體解答過程是:cosA·cosB·cosC=[cos(A+B)+cos(A-B)]·cosC =-cosC+cos(A-B)·cosC=- [cosC-]+cos(A-B)≤cos(A-B) ≤。
例8. 設f(x)=lg,如果當x∈(-∞,1]時f(x)有意義,求實數(shù)a的取值范圍。
[分析]當x∈(-∞,1]時f(x)=lg有意義的函數(shù)問題,轉(zhuǎn)化為1+2+4a>0在x∈(-∞,1]上恒成立的不等式問題。
[解] 由題設可知,不等式1+2+4a>0在x∈(-∞,1]上恒成立,
即:()+()+a>0在x∈(-∞,1]上恒成立。
設t=(), 則t≥, 又設g(t)=t+t+a,其對稱軸為t=-
∴ t+t+a=0在[,+∞)上無實根, 即 g()=()++a>0,得a>-
所以a的取值范圍是a>-。
[注]對于不等式恒成立,引入新的參數(shù)化簡了不等式后,構(gòu)造二次函數(shù)利用函數(shù)的圖像和單調(diào)性進行解決問題,其中也聯(lián)系到了方程無解,體現(xiàn)了方程思想和函數(shù)思想。一般地,我們在解題中要抓住二次函數(shù)及圖像、二次不等式、二次方程三者之間的緊密聯(lián)系,將問題進行相互轉(zhuǎn)化。
在解決不等式()+()+a>0在x∈(-∞,1]上恒成立的問題時,也可使用“分離參數(shù)法”: 設t=(), t≥,則有a=-t-t∈(-∞,-],所以a的取值范圍是a>-。其中最后得到a的范圍,是利用了二次函數(shù)在某區(qū)間上值域的研究,也可屬應用“函數(shù)思想”。
Ⅲ、鞏固性題組:
7.正六棱錐的體積為48,側(cè)面與底面所成的角為45°,則此棱錐的側(cè)面積為___________。
6.關(guān)于x的方程sinx+cosx+a=0有實根,則實數(shù)a的取值范圍是__________。
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com