9.已知等差數(shù)列.且 查看更多

 

題目列表(包括答案和解析)

已知等差數(shù)列,公差,前n項和為,且滿足成等比數(shù)列.

I)求的通項公式;

II)設(shè),求數(shù)列的前項和的值.

 

查看答案和解析>>

已知等差數(shù)列,公差不為零,,且成等比數(shù)列;

⑴求數(shù)列的通項公式;

⑵設(shè)數(shù)列滿足,求數(shù)列的前項和.

 

查看答案和解析>>

已知等差數(shù)列,公差不為零,,且成等比數(shù)列;

⑴求數(shù)列的通項公式;

⑵設(shè)數(shù)列滿足,求數(shù)列的前項和.

 

查看答案和解析>>

已知等差數(shù)列,公差,前項和為,且滿足,.

(Ⅰ)求數(shù)列的通項公式及前項和

(Ⅱ)設(shè),若數(shù)列也是等差數(shù)列,試確定非零常數(shù),并求數(shù)列的前 項和

 

查看答案和解析>>

 已知等差數(shù)列,的前項和,且

(1)求的通項公式;

(2)設(shè),的前n項和,是否存在正數(shù),對任意正整數(shù),不等式恒成立?若存在,求的取值范圍;若不存在,說明理由.

(3)判斷方程是否有解,說明理由;

 

查看答案和解析>>

一、選擇題

1.D  2.B  3.B  4.B  5.A  6.B  7.C  8.B  9.C  10.A  11.B  12.D

2,4,6

13.    14.2      15. 

16.

三、解答題

17.(本小題滿分12分)

       解證:(I)

       由余弦定理得              …………4分

       又                                               …………6分

     (II)

                                                                 …………10分

                                                                                      

即函數(shù)的值域是                                                            …………12分

18.(本小題滿分12分)

       解:(I)依題意

                                                            …………2分

      

                                                                    …………4分

                                                                        …………5分

(II)                   …………6分

                                                         …………7分

                …………9分

                                       …………12分

19.(本小題滿分12分)

     (I)證明:依題意知:

  • <strong id="bk1qf"><output id="bk1qf"><form id="bk1qf"></form></output></strong>
  •      …4分

       (II)由(I)知平面ABCD

           ∴平面PAB⊥平面ABCD.                        …………4分

         在PB上取一點M,作MNAB,則MN⊥平面ABCD,

           設(shè)MN=h

           則

                                …………6分

           要使

           即MPB的中點.                                                                  …………8分

       (Ⅲ)連接BD交AC于O,因為AB//CD,AB=2,CD=1,由相似三角形易得BO=2OD

    ∴O不是BD的中心……………………10分

    又∵M為PB的中點

    ∴在△PBD中,OM與PD不平行

    ∴OM所以直線與PD所在直線相交

    又OM平面AMC

    ∴直線PD與平面AMC不平行.……………………12分

    20.(本小題滿分12分)

           解:由圖可知M(60,98),N(500,230),C(500,168),MN//CD.

    設(shè)這兩種方案的應(yīng)付話費與通話時間的函數(shù)關(guān)系分別為

    ………………2分

    ……………………4分

       (Ⅰ)通話2小時,兩種方案的話費分別為116元、168元.………………6分

       (Ⅱ)因為

    故方案B從500分鐘以后,每分鐘收費0.3元.………………8分

    (每分鐘收費即為CD的斜率)

       (Ⅲ)由圖可知,當(dāng)

    當(dāng);

    當(dāng)……………………11分

    綜上,當(dāng)通話時間在()時,方案B較方案A優(yōu)惠.………………12分

    21.(本小題滿分12分)

    解:(Ⅰ)設(shè)的夾角為,則的夾角為,

    ……………………2分

    ………………4分

    (II)設(shè)

                                                 …………5分

          

           由                            …………6分

                                …………7分

           上是增函數(shù)

           上為增函數(shù)

           當(dāng)m=2時,的最小值為         …………10分

           此時P(2,0),橢圓的另一焦點為,則橢圓長軸長

          

              …………12分

    22.(本小題滿分14分)

           解:(I)                           …………2分

           由                                                           …………4分

          

           當(dāng)的單調(diào)增區(qū)間是,單調(diào)減區(qū)間是

                                                                                         …………6分

           當(dāng)的單調(diào)增區(qū)間是,單調(diào)減區(qū)間是

                                                                                          …………8分

       (II)當(dāng)上單調(diào)遞增,因此

          

                                                                                                          …………10分

           上遞減,所以值域是   

                                                                                 …………12分

           因為在

                                                                                                                 …………13分

           使得成立.

                                                                                                                 …………14分

     

     

     


    同步練習(xí)冊答案