C.且∥ D.∥且∥∥ 查看更多

 

題目列表(包括答案和解析)

.已知奇函數(shù)上單調(diào)遞減,且,則不等式>0的解集是( )

A.             B.      C.       D.

 

查看答案和解析>>

.如圖,三棱錐的底面是正三角形,各條側(cè)棱均相等,.設(shè)點(diǎn)、分別在線段上,且,記周長(zhǎng)為,則的圖象可能是

  

A                                   B                                  C                                 D

 

 

查看答案和解析>>

.已知點(diǎn)為雙曲線的右支上一點(diǎn),為雙曲線的左、右焦點(diǎn),使(為坐標(biāo)原點(diǎn)),且,則雙曲線離心率為( )

A.         B.       C.       D.

 

查看答案和解析>>

.在△中,的中點(diǎn),,點(diǎn)上,且滿足,

(    )

A.             B.           C.            D.

 

查看答案和解析>>

.(本小題滿分12分)

在△ABC中,頂點(diǎn)A(-1,0),B(1,0),動(dòng)點(diǎn)D,E滿足:

;②||=|=|③共線.

(Ⅰ)求△ABC頂點(diǎn)C的軌跡方程;

(Ⅱ) 若斜率為1直線l與動(dòng)點(diǎn)C的軌跡交于M,N兩點(diǎn),且·=0,求直線l的方程.

 

 

查看答案和解析>>

一、選擇題:

1.C 2.D3.A4.C 5.C6.A7.B  8.D9.B10.D11.B 12.B

二、填空題:

13、  14、  15、1   16、一   17、4  18、56  19、  20、 21、 22、4/9  23、②  24、 25、 26、①

三、解答題:

16、解: (Ⅰ),  

 ∴,

 解得

(Ⅱ)由,得:,   

   

17、解:(1)

的最小正周期,  

且當(dāng)時(shí)單調(diào)遞增.

的單調(diào)遞增區(qū)間(寫(xiě)成開(kāi)區(qū)間不扣分).………6分

(2)當(dāng)時(shí),當(dāng),即時(shí)

所以.     

的對(duì)稱軸.    

18、解:(Ⅰ)解法一:“有放回摸兩次,顏色不同”指“先白再黑”或“先黑再白”,記“有放回摸球兩次,兩球恰好顏色不同”為事件,

∵“兩球恰好顏色不同”共種可能,

解法二:“有放回摸取”可看作獨(dú)立重復(fù)實(shí)驗(yàn),

∵每次摸出一球得白球的概率為

∴“有放回摸兩次,顏色不同”的概率為

(Ⅱ)設(shè)摸得白球的個(gè)數(shù)為,依題意得:

,

,

19、(Ⅰ)證明:  連結(jié)交于點(diǎn),連結(jié)

是菱形, ∴的中點(diǎn).

  *點(diǎn)的中點(diǎn), ∴.   

平面平面, ∴平面.

(Ⅱ)解法一:

 平面,平面,∴ .

,∴

是菱形,  ∴.

,

平面.

,垂足為,連接,則,

所以為二面角的平面角.

,∴,.

在Rt△中,=,

.

∴二面角的正切值是.

解法二:如圖,以點(diǎn)為坐標(biāo)原點(diǎn),線段的垂直平分線所在直線為軸,所在直線為軸,所在直線為軸,建立空間直角坐標(biāo)系,令,

,

. 

設(shè)平面的一個(gè)法向量為,

,得,

,則,∴.   

平面,平面,

,∴.

是菱形,∴.

,∴平面.

是平面的一個(gè)法向量,

,

, 

∴二面角的正切值是.

20、解:圓的方程為,則其直徑長(zhǎng),圓心為,設(shè)的方程為,即,代入拋物線方程得:,設(shè),

,  

…6分

,

因此.   

據(jù)等差,, 

所以,,,

即:方程為

21、解:(1)因?yàn)?sub>,

所以,滿足條件.  

又因?yàn)楫?dāng)時(shí),,所以方程有實(shí)數(shù)根

所以函數(shù)是集合M中的元素.

(2)假設(shè)方程存在兩個(gè)實(shí)數(shù)根),

,

不妨設(shè),根據(jù)題意存在數(shù)

使得等式成立, 

因?yàn)?sub>,所以,與已知矛盾,

所以方程只有一個(gè)實(shí)數(shù)根;

(3)不妨設(shè),因?yàn)?sub>所以為增函數(shù),所以,

  又因?yàn)?sub>,所以函數(shù)為減函數(shù),

  所以

所以,即,

所以. 

 

 


同步練習(xí)冊(cè)答案