(2)設(shè)=.求a+c的值. 查看更多

 

題目列表(包括答案和解析)

(16分)設(shè),若a,b,c分別為的相應(yīng)三邊長,

(1)求實數(shù)x的取值范圍;

(2)求的最大內(nèi)角;

(3)設(shè)的外接圓半徑為R,內(nèi)切圓半徑為r,求的取值范圍。

查看答案和解析>>

設(shè)函數(shù)        a  為 常數(shù)且a∈(0,1).

(1)       當a=時,求f(f());      

(2)       若x0滿足f(f(x0))= x0,但f(x0)≠x0,則稱x0為f(x)的二階周期點,證明函數(shù)有且僅有兩個二階周期點,并求二階周期點x1,x2;

(3)       對于(2)中x1,x2,設(shè)A(x1,f(f(x1))),B(x2,f(f(x2))),C(a2,0),記△ABC的面積為s(a),求s(a)在區(qū)間[,]上的最大值和最小值。

查看答案和解析>>

中,角A、B、C的對邊分別為

(1)求角B;

(2)設(shè)的取值范圍。

查看答案和解析>>

設(shè)拋物線C:x2=2py(p>0)的焦點為F,準線為l,A∈C,已知以F為圓心,F(xiàn)A為半徑的圓F交l于B,D兩點;
(1)若∠BFD=90°,△ABD的面積為;求p的值及圓F的方程;
(2)若A,B,F(xiàn)三點在同一直線m上,直線n與m平行,且n與C只有一個公共點,求坐標原點到m,n距離的比值。

查看答案和解析>>

拋物線C的方程為y=ax2(a<0),過拋物線C上一點P(x0,y0)(x0≠0)作斜率為k1,k2的兩條直線分別交拋物線C于A(x1,y1)、B(x2,y2)兩點(P、A、B三點互不相同)且滿足k2+λk1=0(λ≠0且
λ≠-1),
(Ⅰ)求拋物線C的焦點坐標和準線方程;
(Ⅱ)設(shè)直線AB上一點M,滿足,證明線段PM的中點在y軸上;
(Ⅲ)當λ=1時,若點P的坐標為(1,-1),求∠PAB為鈍角時點A的縱坐標y1的取值范圍。

查看答案和解析>>

 

 

一、選擇題

 1―6  DBDCDD   7―12  ADCDCD

二、填空題

13.3   14.       15.-25    16.

三、解答題

17.(滿分12分)

解:       ∴       …………3分

  ∴不等式a+2     ∵a<0    ∴<1+  ……5分

①當時,<0,不等式無解

②當時,<0無解

③ 當時,

xx                …………10分

綜上所述,原不等式的解集為:

①當時,不等式無解

②當時,不等式解集為

xx                …………12分

18.(滿分12分)

(1)甲乙兩隊各五名球員,一個間隔一個排序,出場序的種數(shù)是……3分

 

(2)甲隊五名球員,取連續(xù)兩名的方法數(shù)為4。若不考慮乙隊,甲隊有具只有連續(xù)兩名隊員射中的概率為                      …………………7分

(3)甲、乙兩隊點球罰完,再次出現(xiàn)平局,可能的情況以下6種,即均未中球,均中1球,…均中5球,故所求概率為

       …………………12分

19.(1)∵AA1⊥面ABCD, ∴AA1⊥BD,

又BD⊥AD, ∴BD⊥A1D                                  …………………2分

又A1D⊥BE,∴A1D⊥平面BDE                              …………………3分

(2)連B1C,則B1C⊥BE,易證Rt△CBE∽Rt△CBB1,

,又E為CC1中點,∴

                                           ……………………5分

取CD中點M,連BM,則BM⊥平面CD1,作MN⊥DE于N,連NB,則∠BNM是二面角B―DE―C的平面角            ……………………7分

Rt△CED中,易求得MN=中,∠BNM=

∴∠BNM=arctan                                       …………………10分

(3)易證BN長就是點B到平面A1DE的距離                    …………………11分

∴∠BN=                           …………………12分

20.(滿分12分)

解:(Ⅰ)由 。           …………………2分

b2=ac及正弦定理得sin2B=sin A sin C.

于是    cot A + cot C =

=

=

=

=

=

=                              …………………7分

(Ⅱ)由      ?      =,得,又由,可得,即。

由余弦定理

                                …………………9分

所以                                          …………………12分

21.(滿分13分)

解:(Ⅰ)              …………………4分

(Ⅱ)…………………6分

=                                       …………………8分

                                     …………………9分

∴數(shù)列是等比數(shù)列,且       …………………10分

(Ⅲ)由(Ⅱ)得:    …………………11分

………………12分

                        ………………13分

22.(滿分13分)

解:(Ⅰ)∵橢圓方程為ab>0,c>0,c2=a2-b2

,FP的中點D的坐標為()……2分

直線AB的方程為:∵D在直線AB上∴……3分

化簡得    ∴…………………4分

(Ⅱ)…………5分   

       =-3  ∴                                        …………………6分

由(Ⅰ)得:                                                              …………………7分

∴橢圓方程為:                                                  …………………8分

(Ⅲ)設(shè)直線QA1QA2斜率分別為k1、k2,則

解得……10分由

解得

直線MN的方程為y=0

化簡得

  ∴

即直線MN與x軸交于定點()      ……………13分


同步練習冊答案