的條件下.在軸上是否存在點P.使△AOP是等腰三角形?若存在.請求出P點的坐標,若不存在.請說明理由. 查看更多

 

題目列表(包括答案和解析)

如圖,在△ABC中,AB=BC=2,高BE=
3
,在BC邊的延長線上取一點D,使CD=3.
(1)現(xiàn)有一動點P由A沿AB移動,設(shè)AP=t,S△PCD=S,求S與t之間的關(guān)系式及自變量t的取值范圍.
(2)在(1)的條件下,當t=
1
3
時,過點C作CH⊥PD于H,設(shè)K=7CH:9PD.求證:關(guān)于x的二次函數(shù)y=-x2-(10k-
3
)x+2k
的圖象與x軸的兩個交點關(guān)于原點對稱.
(3)在(1)的條件下,是否存在正實數(shù)t,使PD邊上的高CH=
1
2
CD
?如果存在,請求出t的值;如果精英家教網(wǎng)不存在,請說明理由.

查看答案和解析>>

如圖,在平面直角坐標系xOy中,二次函數(shù)y=
3
2
x2+bx+c
的圖象與x軸交于A(-1,0)、B(3,0)兩點,頂點為C.

(1)求此二次函數(shù)解析式;
(2)點D為點C關(guān)于x軸的對稱點,過點A作直線l:y=
3
3
x+
3
3
交BD于點E,過點B作直線BK∥AD交直線l于K點.問:在四邊形ABKD的內(nèi)部是否存在點P,使得它到四邊形ABKD四邊的距離都相等?若存在,請求出點P的坐標;若不存在,請說明理由;
(3)在(2)的條件下,若M、N分別為直線AD和直線l上的兩個動點,連結(jié)DN、NM、MK,求DN+NM+MK和的最小值.

查看答案和解析>>

如圖,在平面直角坐標系中有Rt△ABC,∠A=90°,AB=AC,A(-2,0)、B(0,1)、C(d,2).
(1)求d的值;
(2)將△ABC沿x軸的正方向平移,在第一象限內(nèi)B、C兩點的對應(yīng)點B′、C′正好落在某反比例函數(shù)圖象上.請求出這個反比例函數(shù)和此時的直線B′C′的解析式;
(3)在(2)的條件下,直線BC交y軸于點G.問在反比例函數(shù)圖象上是否存點P,使得△PGB′是以GB′為直角邊的直角形?如果存在,請求出點P的坐標;如果不存在,請說明理由.

查看答案和解析>>

如圖,在平面直角坐標系內(nèi),點0為坐標原點,經(jīng)過點A(2,6)的直線交x軸負半軸于點B,交y軸于點C,OB=OC,直線AD交x軸正半軸于點D,若△ABD的面積為27.
(1)求直線AD的解析式;
(2)橫坐標為m的點P在AB上(不與點A,B重合),過點P作x軸的平行線交AD于點E,設(shè)PE的長為y,求y與m之間的函數(shù)關(guān)系式并直接寫出相應(yīng)的m的取值范圍;
(3)在(2)的條件下,在x軸上是否存在點F,使△PEF為等腰直角三角形?若存在求出點F的坐標,若不存在,請說明理由.

查看答案和解析>>

如圖,在平面直角坐標系內(nèi),點0為坐標原點,經(jīng)過點A(2,6)的直線交x軸負半軸于點B,交y軸于點C,OB=OC,直線AD交x軸正半軸于點D,若△ABD的面積為27.
(1)求直線AD的解析式;
(2)橫坐標為m的點P在AB上(不與點A,B重合),過點P作x軸的平行線交AD于點E,設(shè)PE的長為y,求y與m之間的函數(shù)關(guān)系式并直接寫出相應(yīng)的m的取值范圍;
(3)在(2)的條件下,在x軸上是否存在點F,使△PEF為等腰直角三角形?若存在求出點F的坐標,若不存在,請說明理由.

查看答案和解析>>


同步練習冊答案