題目列表(包括答案和解析)
在直角坐標(biāo)系中,以點
為極點,以x軸的正方向為極軸方向建立極坐標(biāo)系如圖所示,寫出平面上點的直角坐標(biāo)和極坐標(biāo)的變換公式(假設(shè)極坐標(biāo)系和直角坐標(biāo)系中的長度單位相同).如圖1,、是某地一個湖泊的兩條互相垂直的湖堤,線段和曲線段分別是湖泊中的一座棧橋和一條防波堤.為觀光旅游的需要,擬過棧橋上某點分別修建與、平行的棧橋、,且以、為邊建一個跨越水面的三角形觀光平臺.建立如圖2所示的直角坐標(biāo)系,測得線段的方程是,曲線段的方程是,設(shè)點的坐標(biāo)為,記(題中所涉及的長度單位均為米,棧橋和防波堤都不計寬度).
(1)求的取值范圍;
(2)試寫出三角形觀光平臺面積關(guān)于的函數(shù)解析式,并求出該面積的最小值.
如圖所示,O是線段AB的中點,|AB|=2c,以點A為圓心,2a為半徑作一圓,其中。
(1)若圓A外的動點P到B的距離等于它到圓周的最短距離,建立適當(dāng)坐標(biāo)系,求動點P的軌跡方程,并說明軌跡是何種曲線;
(2)經(jīng)過點O的直線l與直線AB成60°角,當(dāng)c=2,a=1時,動點P的軌跡記為E,設(shè)過點B的直線m交曲線E于M、N兩點,且點M在直線AB的上方,求點M到直線l的距離d的取值范圍。
某地政府為科技興市,欲在如圖所示的矩形ABCD的非農(nóng)業(yè)用地中規(guī)劃出一個高科技工業(yè)園區(qū)(如圖中陰影部分),形狀為直角梯形QPRE(線段EQ和RP為兩個底邊),已知AB=2 km,BC=6 km,AE=BF=4 km其中曲線段AF是以A為頂點、AD為對稱軸的拋物線的一部分.分別以直線AB,AD為x軸和y軸建立平面直角坐標(biāo)系.
(1)求曲線段AF所在拋物線的方程;
(2)設(shè)點P的橫坐標(biāo)為x,高科技工業(yè)園區(qū)的面積為S.試求S關(guān)于x的函數(shù)表達式,并求出工業(yè)園區(qū)面積S的最大值.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com