18. 20090411 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)

           20個下崗職工開了50畝荒地,這些地可以種蔬菜、棉花、水稻,如果種這些農(nóng)作物每畝地所需的勞力和預(yù)計的產(chǎn)值如下:

                                                                                    

每畝需勞力

每畝預(yù)計產(chǎn)值

蔬  菜

1100元

棉  花

750元

水  稻

600元

問怎樣安排,才能使每畝地都種上作物,所有職工都有工作,而且農(nóng)作物的預(yù)計總產(chǎn)值達到最高?

查看答案和解析>>

(2011•自貢三模)(本小題滿分12分>
設(shè)平面直角坐標(biāo)中,O為原點,N為動點,|
ON
|=6,
ON
=
5
OM
.過點M作MM1丄y軸于M1,過N作NN1⊥x軸于點N1,
OT
=
M1M
+
N1N
,記點T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(其中點P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

(文) (本小題滿分12分已知函數(shù)y=4-2
3
sinx•cosx-2sin2x(x∈R)

(1)求函數(shù)的值域和最小正周期;
(2)求函數(shù)的遞減區(qū)間.

查看答案和解析>>

(07年福建卷理)(本小題滿分12分)在中,,

(Ⅰ)求角的大小;

(Ⅱ)若最大邊的邊長為,求最小邊的邊長.

查看答案和解析>>

(07年福建卷文)(本小題滿分12分)

如圖,正三棱柱ABC-A1B1C1的所有棱長都為2,DCC1中點.

(I)求證:AB1⊥平面A1BD;

(II)求二面角A-A1D-B的大小.

查看答案和解析>>

 

一、選擇題:本大題共12小題,每小題5分,共60分。

1―6AABCBD   7―12ACDCBD

二、填空題:本大題共4小題,每小題5分,共20分。

13.60°  14.-8  15.    16.6

三、解答題:本大題共6小題,共70分,解答應(yīng)寫出文字說明,證明過程或演算步驟。

17.(本小題滿分10分)

   (I)解:因為

       由正弦定理得

       所以

       又

       故   5分

   (II)由

       故

          10分

18.(本小題滿分12分)

   (I)解:當(dāng)

       故   1分

       因為   當(dāng)

       當(dāng)

       故上單調(diào)遞減。   5分

   (II)解:由題意知上恒成立,

       即上恒成立。   7分

       令

       因為   9分       

       故上恒成立等價于

          11分

       解得   12分

19.(本小題滿分12分)

   (I)證明:

          2分

       又

   (II)方法一

       解:過O作

      

       則O1是ABC截面圓的圓心,且BC是直徑,

       過O作于M,則M為PA的中點,

       連結(jié)O1A,則四邊形MAO1O為矩形,

          8分

       過O作于E,連EO1­,

       則為二面角O―AC―B的平面角   10分

       在

      

       在

       所以二面角O―AC―B的大小為   12分

       方法二

       同上,   8分

      

      

      

       設(shè)面OAC的法向量為

      

       得

       故

       所以二面角O―AC―B的大小為   12分

20.(本小題滿分12分)

   (I)解:設(shè)次將球擊破,

    則   5分

   (II)解:對于方案甲,積分卡剩余點數(shù)

       由已知可得

      

      

      

       故

       故   8分

       對于方案乙,積分卡剩余點數(shù)

       由已知可得

      

      

      

      

       故

       故   11分

       故

       所以選擇方案甲積分卡剩余點數(shù)最多     12分

21.(本小題滿分12分)

       解:依題意設(shè)拋物線方程為

       直線

       則的方程為

      

       因為

       即

       故

   (I)若

      

       故點B的坐標(biāo)為

       所以直線   5分

   (II)聯(lián)立

      

       則

       又   7分

       故   9分

       因為成等差數(shù)列,

       所以

       故

       將代入上式得

       。   12分

22.(本小題滿分12分)

   (I)解:

       又

       故   2分

       而

       當(dāng)

       故為增函數(shù)。

       所以的最小值為0   4分

   (II)用數(shù)學(xué)歸納法證明:

       ①當(dāng)

       又

       所以為增函數(shù),即

       則

       所以成立       6分

       ②假設(shè)當(dāng)成立,

       那么當(dāng)

       又為增函數(shù),

      

       則成立。

       由①②知,成立   8分

   (III)證明:由(II)

       得

       故   10分

       則

      

       所以成立   12分

 

 

 

 

 


同步練習(xí)冊答案