題目列表(包括答案和解析)
6 |
OF |
FQ |
6 |
6 |
OF |
FQ |
OF |
| ||
4 |
OQ |
設橢圓的左焦點為F1(-2,0),直線與x軸交與點N(-3,0),過點N且傾斜角為30°的直線交橢圓于A,B兩點.
(1)求直線和橢圓的方程;
(2)求證:點在以線段AB為直徑的圓上;
(3)在直線上有兩個不重合的動點C,D,以CD為直徑且過點F1的所有圓中,求面積最小的圓的半徑長。
設橢圓的中心在坐標原點,A(2,0)、B(0,1)是它的兩個頂點,直線y=kx(k>0)與AB相交于點D,與橢圓相交于E、F兩點.
(Ⅰ)若,求k的值;
(Ⅱ)求四邊形AEBF面積的最大值.
設橢圓的左焦點為F1(-2,0),直線與x軸交與點N(-3,0),過點N且傾斜角為30°的直線l交橢圓于A,B兩點.
(1)求直線l和橢圓的方程;
(2)求證:點F1(-2,0)在以線段AB為直徑的圓上;
(3)在直線l上有兩個不重合的動點C,D,以CD為直徑且過點F1的所有圓中,求面積最小的圓的半徑長.
一、1――12 DBDCD CABAC DD
二、13.810 14. 6 15. 420 16.
三、解答題
17.解(I)由,得
由,得
又
所以
(II)由正弦定理得
所以的面積
18.解:
(I)
有6中情況
所以函數有零點的概率為
(II)對稱軸,則
函數在區(qū)間上是增函數的概率為
19.解:(I)證明:由已知得:
(II)證明:取AB中點H,連結GH,FH,
(由線線平行證明亦可)
(III)
20.解(I)
(II)
若時,是減函數,則恒成立,得
(若用,則必須求導得最值)
21.解:(I)由,得
解得或(舍去)
(II)
22.(I)由題設,及,不妨設點,其中,于點A 在橢圓上,有,即,解得,得
直線AF1的方程為,整理得
由題設,原點O到直線AF1的距離為,即
將代入上式并化簡得,得
(II)設點D的坐標為
當時,由知,直線的斜率為,所以直線的方程為
或,其中,
點,的坐標滿足方程組
將①式代入②式,得
整理得
于是
由①式得
由知,將③式和④式代入得
將代入上式,整理得
當時,直線的方程為,的坐標滿足方程組
,所以,由知,
即,解得,這時,點D的坐標仍滿足
綜上,點D的軌跡方程為
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com