(Ⅰ)若a=1.函數(shù)的圖象能否總在直線的下方?說明理由, 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)

 已知函數(shù)R).

(Ⅰ)若a=1,函數(shù)的圖象能否總在直線的下方?說明理由;

 

(Ⅱ)若函數(shù)在(0,2)上是增函數(shù),求a的取值范圍;

 

(Ⅲ)設(shè)為方程的三個(gè)根,且,,,  求證:

 

查看答案和解析>>

已知函數(shù)數(shù)學(xué)公式的圖象在點(diǎn)P(0,f(0))處的切線方程為y=3x-2.
(1)求實(shí)數(shù)a,b的值;
(2)設(shè)數(shù)學(xué)公式是[2,+∞)上的增函數(shù).
①求實(shí)數(shù)m的最大值;
②當(dāng)m取最大值時(shí),是否存在點(diǎn)Q,使得過點(diǎn)Q的直線若能與曲線y=g(x)圍成兩個(gè)封閉圖形,則這兩個(gè)封閉圖形的面積總相等?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

已知函數(shù)f(x)=ax﹣lnx+1(a∈R),g(x)=x e1-x。
(1)求函數(shù)g(x)在區(qū)間(0,e]上的值域;
(2)是否存在實(shí)數(shù)a,對(duì)任意給定的x0∈(0,e],在區(qū)間[1,e]上都存在兩個(gè)不同的xi(i=1,2),使得f(xi)=g(x0)成立,若存在,求出a的取值范圍;若不存在,請(qǐng)說明理由。
(3)給出如下定義:對(duì)于函數(shù)y=F(x)圖象上任意不同的兩點(diǎn)A(x1,y1),B(x2,y2),如果對(duì)于函數(shù)y=F(x)圖象上的點(diǎn)M(x0,y0)(其中總能使得F(x1)﹣F(x2)=F'(x0)(x1-x2)成立,則稱函數(shù)具備性質(zhì)“L”,試判斷函數(shù)f(x)是不是具備性質(zhì)“L”,并說明理由。

查看答案和解析>>

已知函數(shù)f(x)=ax-lnx+1(a∈R),g(x)=xe1-x
(1)求函數(shù)g(x)在區(qū)間(0,e]上的值域;
(2)是否存在實(shí)數(shù)a,對(duì)任意給定的x0∈(0,e],在區(qū)間[1,e]上都存在兩個(gè)不同的xi(i=1,2),使得f(xi)=g(x0)成立.若存在,求出a的取值范圍;若不存在,請(qǐng)說明理由.
(3)給出如下定義:對(duì)于函數(shù)y=F(x)圖象上任意不同的兩點(diǎn)A(x1,y1),B(x2,y2),如果對(duì)于函數(shù)y=F(x)圖象上的點(diǎn)M(x0,y0)(其中x0=
x1+x2
2
)
總能使得F(x1)-F(x2)=F'(x0)(x1-x2)成立,則稱函數(shù)具備性質(zhì)“L”,試判斷函數(shù)f(x)是不是具備性質(zhì)“L”,并說明理由.

查看答案和解析>>

已知函數(shù)f(x)=ax-lnx+1(a∈R),g(x)=xe1-x
(1)求函數(shù)g(x)在區(qū)間(0,e]上的值域;
(2)是否存在實(shí)數(shù)a,對(duì)任意給定的x∈(0,e],在區(qū)間[1,e]上都存在兩個(gè)不同的xi(i=1,2),使得f(xi)=g(x)成立.若存在,求出a的取值范圍;若不存在,請(qǐng)說明理由.
(3)給出如下定義:對(duì)于函數(shù)y=F(x)圖象上任意不同的兩點(diǎn)A(x1,y1),B(x2,y2),如果對(duì)于函數(shù)y=F(x)圖象上的點(diǎn)M(x,y)(其中總能使得F(x1)-F(x2)=F'(x)(x1-x2)成立,則稱函數(shù)具備性質(zhì)“L”,試判斷函數(shù)f(x)是不是具備性質(zhì)“L”,并說明理由.

查看答案和解析>>

                   高三數(shù)學(xué)試卷(文科)                 2009.4   

題號(hào)

1

2

3

4

5

6

7

8

答案

C

B

A

B

A

D

C

A

一、選擇題:本大題共 8 小題,每小題 5 分,共 40 分.

 

 

 

二、填空題:本大題共 6 小題,每小題 5 分,共 30 分.

9. 36         10. 10        11. 2, 8      12.      13.        14. 5, 2     

注:兩空的題目,第一個(gè)空3分,第二個(gè)空2分.

三、解答題:本大題共 6 小題,共 80 分.

15.(本小題滿分12分)

(Ⅰ)解:由余弦定理,                       ----------------------------3分

.                                 ---------------------------5分

(Ⅱ)解:由(Ⅰ)知 ,

所以角為銳角,所以,          ----------------------------7分

     --------------------------10分

                          

   .

        所以.                             ---------------------------12分

16.(本小題滿分12分)

(Ⅰ)解:記 “2次匯報(bào)活動(dòng)都是由小組成員甲發(fā)言” 為事件A.   -----------------------------1分     

由題意,得事件A的概率,              

即2次匯報(bào)活動(dòng)都是由小組成員甲發(fā)言的概率為.            ---------------------------5分

(Ⅱ)解:由題意,每次匯報(bào)時(shí),男生被選為代表的概率為,女生被選為代表的概率為.

                                                               ----------------------------6分

      記“男生發(fā)言次數(shù)不少于女生發(fā)言次數(shù)”為事件B,

由題意,事件B包括以下兩個(gè)互斥事件:

1事件B1:男生發(fā)言2次女生發(fā)言0次,其概率為

,             ----------------------------8分

2事件B2:男生發(fā)言1次女生發(fā)言1次,其概率為

,           ----------------------------10分

所以,男生發(fā)言次數(shù)不少于女生發(fā)言次數(shù)的概率為.

   ---------------------------12分

17.(本小題滿分14分)

方法一:(Ⅰ)證明:在中,,

       ,

       ,即,                             ---------------------------1分

       ,

       平面.                                      ---------------------------4分

(Ⅱ)如圖,連接AC,由(Ⅰ)知平面

     AC為PA在平面ABCD內(nèi)的射影,

     為PA與平面ABCD所成的角.    --------------6分

     在中,,

    

    在中,,,

   

    PA與平面ABCD所成角的大小為.                ---------------------------8分

(Ⅲ)由(Ⅰ)知,

,

平面.                                       ---------------------------9分

如圖,過C作于M,連接BM,

是BM在平面PCD內(nèi)的射影,

,

為二面角B-PD-C的平面角.                       ---------------------------11分

中, , PC=1, ,

,

,

,

中, , BC=1, ,

,

二面角B-PD-C的大小為.                       --------------------------14分

  方法二:(Ⅰ)同方法一.                                        ---------------------------4分

   (Ⅱ)解:連接AC,由(Ⅰ)知平面,

     AC為PA在平面ABCD內(nèi)的射影,

       為PA與平面ABCD所成的角.                     ---------------------------6分

       如圖,在平面ABCD內(nèi),以C為原點(diǎn), CD、CB、CP分別為x、y、z軸,建立空間直角坐標(biāo)系C-xyz,

         則, ,                    

                                                                 ---------------------------7分

       ,

       PA與平面ABCD所成角的大小為.               ---------------------------9分

 (Ⅲ)過C作于M,連接BM,設(shè),

       則

,

;           1       

共線,

,               2

由12,解得,

點(diǎn)的坐標(biāo)為,,

,

,

為二面角B-PD-C的平面角.                       ---------------------------12分

         ,,

         , 

 二面角B-PD-C的大小為.                        --------------------------14分

18.(本小題滿分14分)

(Ⅰ)解:因?yàn)?sub>,

      所以當(dāng)時(shí),,解得,           ---------------------------2分

          當(dāng)時(shí),,即,解得,

      所以,解得;                                 ---------------------------5分

,數(shù)列的公差,

所以.                            ---------------------------8分

(Ⅱ)因?yàn)?

                     ---------------------------9分

        ---------------------------12分

.                       

因?yàn)?sub>,

所以 .                          -------------------------14分

        注:為降低難度,此題故意給出多余條件,有多種解法,請(qǐng)相應(yīng)評(píng)分.

19.(本小題滿分14分)

   (Ⅰ)解:設(shè)A(x1, y1),

因?yàn)镻為AM的中點(diǎn),且P的縱坐標(biāo)為0,M的縱坐標(biāo)為1,

所以,解得,                              -------------------------1分

又因?yàn)辄c(diǎn)A(x1, y1)在橢圓C上,

所以,即,解得,

 則點(diǎn)A的坐標(biāo)為,                      -------------------------3分

所以直線l的方程為,或.    -------------------------5分

   (Ⅱ)設(shè)A(x1, y1),B(x2, y2),則

所以,

         則,                   -------------------------7分

         當(dāng)直線AB的斜率不存在時(shí),其方程為,此時(shí);

-------------------------8分

當(dāng)直線AB的斜率存在時(shí),設(shè)其方程為,

   由題設(shè)可得A、B的坐標(biāo)是方程組的解,

   消去y得

   所以,       -------------------------10分

   則,

   所以,

   當(dāng)時(shí),等號(hào)成立, 即此時(shí)取得最大值1.    -------------------------13分

綜上,當(dāng)直線AB的方程為時(shí),有最大值1.  -------------------14分

20.(本小題滿分14分)

(Ⅰ)解:當(dāng)時(shí),,

因?yàn)?sub>,

所以,函數(shù)的圖象不能總在直線的下方.          ---------------------------3分

(Ⅱ)解:由題意,得,

,解得,                     --------------------------4分

當(dāng)時(shí),由,解得,

所以上是增函數(shù),與題意不符,舍去;

當(dāng)時(shí),由,與題意不符,舍去;     --------------------------6分

當(dāng)時(shí),由,解得,

所以上是增函數(shù),

在(0,2)上是增函數(shù),

              所以,解得,

綜上,a的取值范圍為.                            ---------------------------9分

(Ⅲ)解:因?yàn)榉匠?sub>最多只有3個(gè)根,

      由題意,得在區(qū)間內(nèi)僅有一根,

      所以,           1

同理,           2       --------------------------11分

當(dāng)時(shí),由1得 ,即,

    由2得,即,

    因?yàn)?sub>,所以,即;

當(dāng)時(shí),由1得 ,即,

    由2得,即,

    因?yàn)?sub>,所以,即

當(dāng)時(shí),因?yàn)?sub>,所以有一根0,這與題意不符.

綜上,.                                          ---------------------------14分

注:在第(Ⅲ)問中,得到12后,可以在坐標(biāo)平面aOb內(nèi),用線性規(guī)劃方法解. 請(qǐng)相應(yīng)評(píng)分.

       

     

 

 


同步練習(xí)冊(cè)答案