依題意有.∴. 查看更多

 

題目列表(包括答案和解析)

意大利數(shù)學(xué)家斐波那契在他的1228年版的《算經(jīng)》一書中記述了有趣的兔子問題:假定每對(duì)大兔子每月能生一對(duì)小兔子,而每對(duì)小兔子過了一個(gè)月就可長(zhǎng)成大兔子,如果不發(fā)生死亡,那么由一對(duì)大兔子開始,一年后能有多少對(duì)大兔子呢?

我們依次給出各個(gè)月的大兔子對(duì)數(shù),并一直推算下去到無盡的月數(shù),可得數(shù)列:1,1,2,3,5,8,13,21,34,55,89,144,233,….這就是斐波那契數(shù)列,此數(shù)列中a1a2=1,你能歸納出,當(dāng)n≥3時(shí),an的遞推關(guān)系嗎?

查看答案和解析>>

意大利數(shù)學(xué)家斐波那契(L.Fibonacci)在他的1228年版的《算經(jīng)》一書中記述了有趣的兔子問題:假定每對(duì)大兔子每月能生一對(duì)小兔子,而每對(duì)小兔子過了一個(gè)月就可長(zhǎng)成大兔子,如果不發(fā)生死亡,那么由一對(duì)大兔子開始,一年后能有多少對(duì)大兔子呢?

我們依次給出各個(gè)月的大兔子對(duì)數(shù),并一直推算下去到無盡的月數(shù),可得數(shù)列:

1,1,2,3,5,8,13,21,34,55,89,144,233,……

這就是斐波那契數(shù)列,此數(shù)列中a1=a2=1,你能歸納出當(dāng)n≥3時(shí)an的遞推關(guān)系式嗎?

查看答案和解析>>

意大利數(shù)學(xué)家斐波那契(L.Fibonacci)在他的1228年版的《算經(jīng)》一書中記述了有趣的兔子問題:假定每對(duì)大兔子每月能生一對(duì)小兔子,而每對(duì)小兔子過了一個(gè)月就可長(zhǎng)成大兔子.如果不發(fā)生死亡,那么由一對(duì)大兔子開始,一年后能有多少對(duì)大兔子呢?

我們依次給出各個(gè)月的大兔子對(duì)數(shù),并一直推算下去到無盡的月數(shù),可得數(shù)列:

1,1,2,3,5,8,13,21,34,55,89,144,233,….

這就是斐波那契數(shù)列,此數(shù)列中a1=a2=1,你能歸納出,當(dāng)n≥3時(shí)an的遞推關(guān)系式嗎?

查看答案和解析>>

本題共有(1)、(2)、(3)三個(gè)選答題,每題7分,請(qǐng)考生任選2題作答,滿分14分.如果多做,則以所做的前2題計(jì)分.作答時(shí),先用2B鉛筆在答題卡上把所選題目對(duì)應(yīng)的題號(hào)涂黑,并將所選題號(hào)填入括號(hào)中.
(1)選修4-2:矩陣與變換
變換T1是逆時(shí)針旋轉(zhuǎn)90°的旋轉(zhuǎn)變換,對(duì)應(yīng)的變換矩陣為M1,變換T2對(duì)應(yīng)的變換矩陣是M2=
11
01

(I)求點(diǎn)P(2,1)在T1作用下的點(diǎn)Q的坐標(biāo);
(II)求函數(shù)y=x2的圖象依次在T1,T2變換的作用下所得的曲線方程.
(2)選修4-4:極坐標(biāo)系與參數(shù)方程
從極點(diǎn)O作一直線與直線l:ρcosθ=4相交于M,在OM上取一點(diǎn)P,使得OM•OP=12.
(Ⅰ)求動(dòng)點(diǎn)P的極坐標(biāo)方程;
(Ⅱ)設(shè)R為l上的任意一點(diǎn),試求RP的最小值.
(3)選修4-5:不等式選講
已知f(x)=|6x+a|.
(Ⅰ)若不等式f(x)≥4的解集為{x|x≥
1
2
或x≤-
5
6
}
,求實(shí)數(shù)a的值;
(Ⅱ)在(Ⅰ)的條件下,若f(x)+f(x-1)>b對(duì)一切實(shí)數(shù)x恒成立,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

本題共有(1)、(2)、(3)三個(gè)選答題,每題7分,請(qǐng)考生任選2題作答,滿分14分.如果多做,則以所做的前2題計(jì)分.作答時(shí),先用2B鉛筆在答題卡上把所選題目對(duì)應(yīng)的題號(hào)涂黑,并將所選題號(hào)填入括號(hào)中.
(1)選修4-2:矩陣與變換
變換T1是逆時(shí)針旋轉(zhuǎn)90°的旋轉(zhuǎn)變換,對(duì)應(yīng)的變換矩陣為M1,變換T2對(duì)應(yīng)的變換矩陣是;
(I)求點(diǎn)P(2,1)在T1作用下的點(diǎn)Q的坐標(biāo);
(II)求函數(shù)y=x2的圖象依次在T1,T2變換的作用下所得的曲線方程.
(2)選修4-4:極坐標(biāo)系與參數(shù)方程
從極點(diǎn)O作一直線與直線l:ρcosθ=4相交于M,在OM上取一點(diǎn)P,使得OM•OP=12.
(Ⅰ)求動(dòng)點(diǎn)P的極坐標(biāo)方程;
(Ⅱ)設(shè)R為l上的任意一點(diǎn),試求RP的最小值.
(3)選修4-5:不等式選講
已知f(x)=|6x+a|.
(Ⅰ)若不等式f(x)≥4的解集為,求實(shí)數(shù)a的值;
(Ⅱ)在(Ⅰ)的條件下,若f(x)+f(x-1)>b對(duì)一切實(shí)數(shù)x恒成立,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

 

1.(1)因?yàn)?sub>,所以

      又是圓O的直徑,所以

      又因?yàn)?sub>(弦切角等于同弧所對(duì)圓周角)

      所以所以

      又因?yàn)?sub>,所以相似

      所以,即

  (2)因?yàn)?sub>,所以

       因?yàn)?sub>,所以

       由(1)知:。所以

       所以,即圓的直徑

       又因?yàn)?sub>,即

     解得

2.依題設(shè)有:

 令,則

 

 

3.將極坐標(biāo)系內(nèi)的問題轉(zhuǎn)化為直角坐標(biāo)系內(nèi)的問題

  點(diǎn)的直角坐標(biāo)分別為

  故是以為斜邊的等腰直角三角形,

  進(jìn)而易知圓心為,半徑為,圓的直角坐標(biāo)方程為

      ,即

  將代入上述方程,得

  ,即

4.假設(shè),因?yàn)?sub>,所以。

又由,則

所以,這與題設(shè)矛盾

又若,這與矛盾

綜上可知,必有成立

同理可證也成立

命題成立

5. 解:由a1=S1,k=.下面用數(shù)學(xué)歸納法進(jìn)行證明.

1°.當(dāng)n=1時(shí),命題顯然成立;

2°.假設(shè)當(dāng)n=k(kN*)時(shí),命題成立,

即1?2?3+2?3?4+……+ k(k+1)(k+2)= k(k+1)(k+2)(k+3),

則n=k+1時(shí),1?2?3+2?3?4+……+ k(k+1)(k+2)+(k+1)(k+2)(k+3)= k(k+1)(k+2)(k+3)+(k+1)(k+2)(k+3)

=( k+1)(k+1+1)(k+1+2)(k+1+3)

即命題對(duì)n=k+1.成立

由1°, 2°,命題對(duì)任意的正整數(shù)n成立.

6.(1)因?yàn)?sub>,,

      ,所以

       故事件A與B不獨(dú)立。

   (2)因?yàn)?sub>

      

       所以

 

 

 

 

 

 

 

 

 

 

 

 


同步練習(xí)冊(cè)答案