對于函數(shù).我們把使的實數(shù)x叫做函數(shù)的零點.函數(shù)的零點是 ,若函數(shù)和均是定義在上的連續(xù)函數(shù).且部分函數(shù)值分別由下表給出:X1234 X1234 查看更多

 

題目列表(包括答案和解析)

對于函數(shù)y=f(x),我們把使f(x)=0的實數(shù)叫做函數(shù)y=f(x)的零點,設(shè)x是函數(shù)f(x)=x2-|log2x|的一個零點,則x所在的一個區(qū)間是( )
A.
B.
C.
D.(1,+∞)

查看答案和解析>>

對于函數(shù)y=f(x),我們把使f(x)=0的實數(shù)叫做函數(shù)y=f(x)的零點,設(shè)x是函數(shù)f(x)=x2-|log2x|的一個零點,則x所在的一個區(qū)間是( )
A.
B.
C.
D.(1,+∞)

查看答案和解析>>

我們把使得的實數(shù)x叫做函數(shù)的零點,對于區(qū)間上的連續(xù)函數(shù),若,那么函數(shù)在區(qū)間內(nèi)有零點,則函數(shù)的零點所在的區(qū)間應(yīng)是

A.(1,2)                 B.(2,3)        C.(3,4)                 D.(4,5)

查看答案和解析>>

我們把使得f(x)=0的實數(shù)x叫做函數(shù)y=f(x)的零點.對于區(qū)間[a,b]上的連續(xù)函數(shù)y=f(x),若f(a)•f(b)<0,那么函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點.則函數(shù)f(x)=lnx+2x-6的零點個數(shù)為( 。

查看答案和解析>>

我們把使得f(x)=0的實數(shù)x叫做函數(shù)y=f(x)的零點.對于區(qū)間[a,b]上的連續(xù)函數(shù)y=f(x),若f(a)•f(b)<0,那么函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點.則函數(shù)f(x)=lnx+2x-6的零點個數(shù)為( )
A.0
B.1
C.2
D.多于兩個

查看答案和解析>>

一、選擇題:本大題共8個小題,每小題5分,共40分。

題號

1

2

3

4

5

6

7

8

答案

B

A

B

D

C

D

C

D

二、填空題:本大題共6個小題,每小題5分,共30分

9.    10. 60   11.    12.    13. 2    14. -2;1

三、解答題: 本大題共6個小題,共80分。

15. (本小題共13分)

已知函數(shù)

(Ⅰ)求函數(shù)的定義域;

(Ⅱ)求函數(shù)在區(qū)間上的最值。

解:(Ⅰ)由題意                 

所求定義域為  {}                            …………4分

(Ⅱ)

                           …………9分

   知   ,

所以當(dāng)時,取得最大值為;                   …………11分

當(dāng)時,取得最小值為0 。                   …………13分

16. (本小題共13分)

已知數(shù)列中,,點(1,0)在函數(shù)的圖像上。

(Ⅰ)求數(shù)列 的通項;

(Ⅱ)設(shè),求數(shù)列的前n項和。      

解:(Ⅰ)由已知        又         …………3分

 所以 數(shù)列是公比為的等比數(shù)列      所以        …………6分

     (Ⅱ) 由                                …………9分

      所以                …………13分

17. (本小題共14分)

如圖,在正三棱柱中,,的中點,點上,。

(Ⅰ)求所成角的大;        

(Ⅱ)求二面角的正切值;

(Ⅲ) 證明.

解:(Ⅰ)在正三棱柱中,  

又  是正△ABC邊的中點,

                               …………3分

所成角

又     sin∠=                      …………5分

所以所成角為

(Ⅱ) 由已知得 

   ∠為二面角的平面角,     所以     …………9分

(Ⅲ)證明:  依題意  得   ,,

因為                        …………11分

又由(Ⅰ)中    知,且,

                                      …………14分

18. (本小題共13分)

某校高二年級開設(shè)《幾何證明選講》及《數(shù)學(xué)史》兩個模塊的選修科目。每名學(xué)生至多選修一個模塊,的學(xué)生選修過《幾何證明選講》,的學(xué)生選修過《數(shù)學(xué)史》,假設(shè)各人的選擇相互之間沒有影響。

(Ⅰ)任選1名學(xué)生,求該生沒有選修過任何一個模塊的概率;

(Ⅱ)任選4名學(xué)生,求至少有3人選修過《幾何證明選講》的概率。

解:(Ⅰ)設(shè)該生參加過《幾何證明選講》的選修為事件A,

參加過《數(shù)學(xué)史》的選修為事件B, 該生沒有選修過任何一個模塊的概率為P,

所以 該生沒有選修過任何一個模塊的概率為                     …………6分

(Ⅱ)至少有3人選修過《幾何證明選講》的概率為

       

  所以至少有3人選修過《幾何證明選講》的概率為               …………13分

19. (本小題共13分)

已知函數(shù)的圖像如圖所示。

(Ⅰ)求的值;

(Ⅱ)若函數(shù)處的切線方程為,求函數(shù)的        

解析式;

(Ⅲ)若=5,方程有三個不同的根,求實數(shù)的取值范圍。

  解: 函數(shù)的導(dǎo)函數(shù)為  

(Ⅰ)由圖可知  函數(shù)的圖像過點(0,3),且

  得                         …………3分

(Ⅱ)依題意 

         解得  

   所以                                 …………8分

(Ⅲ)依題意

          由                                       ①

    若方程有三個不同的根,當(dāng)且僅當(dāng) 滿足        ②

  由 ① ②  得   

   所以 當(dāng)  時 ,方程有三個不同的根。     …………13分

20. (本小題共14分)

       已知分別為橢圓的左、右焦點,直線過點且垂直于橢圓的長軸,動直線垂直于直線,垂足為,線段的垂直平分線交于點M。

(Ⅰ)求動點M的軌跡的方程;

(Ⅱ)過點作直線交曲線于兩個不同的點P和Q,設(shè)=,若∈[2,3],求的取值范圍。

解:(Ⅰ)設(shè)M,則,由中垂線的性質(zhì)知

||=     化簡得的方程為                  …………3分

(另:由知曲線是以x軸為對稱軸,以為焦點,以為準(zhǔn)線的拋物線

    所以  ,         則動點M的軌跡的方程為

(Ⅱ)設(shè),由=  知        ①

又由 在曲線上知                   ②

由  ①  ②       解得    所以 有          …………8分

 ===  …………10分

設(shè)∈[2,3], 有 在區(qū)間上是增函數(shù),

得       進而有      

所以    的取值范圍是                             …………14分

               

 

 

 

 

 

 


同步練習(xí)冊答案