故或解得.可知 查看更多

 

題目列表(包括答案和解析)

已知等比數(shù)列中,,且,公比,(1)求;(2)設(shè),求數(shù)列的前項(xiàng)和

【解析】第一問,因?yàn)橛深}設(shè)可知

 故

,又由題設(shè)    從而

第二問中,

當(dāng)時,,

時, 

時,

分別討論得到結(jié)論。

由題設(shè)可知

 故

,又由題設(shè)   

從而……………………4分

(2)

當(dāng)時,……………………6分

時,……8分

時,

 ……………………10分

綜上可得 

 

查看答案和解析>>

已知函數(shù)

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)設(shè),若對任意,不等式 恒成立,求實(shí)數(shù)的取值范圍.

【解析】第一問利用的定義域是     

由x>0及 得1<x<3;由x>0及得0<x<1或x>3,

故函數(shù)的單調(diào)遞增區(qū)間是(1,3);單調(diào)遞減區(qū)間是

第二問中,若對任意不等式恒成立,問題等價于只需研究最值即可。

解: (I)的定義域是     ......1分

              ............. 2分

由x>0及 得1<x<3;由x>0及得0<x<1或x>3,

故函數(shù)的單調(diào)遞增區(qū)間是(1,3);單調(diào)遞減區(qū)間是     ........4分

(II)若對任意不等式恒成立,

問題等價于,                   .........5分

由(I)可知,在上,x=1是函數(shù)極小值點(diǎn),這個極小值是唯一的極值點(diǎn),

故也是最小值點(diǎn),所以;            ............6分

當(dāng)b<1時,

當(dāng)時,;

當(dāng)b>2時,;             ............8分

問題等價于 ........11分

解得b<1 或 或    即,所以實(shí)數(shù)b的取值范圍是 

 

查看答案和解析>>

(2012•普陀區(qū)一模)給出問題:已知△ABC滿足a•cosA=b•cosB,試判斷△ABC的形狀,某學(xué)生的解答如下:
(i)a•
b2+c2-a2
2bc
=b•
a2+c2-b2
2ac
?a2(b2+c2-a2)=b2(a2+c2-b2)?(a2-b2)•c2=(a2-b2)(a2+b2)?c2=a2+b2
故△ABC是直角三角形.
(ii)設(shè)△ABC外接圓半徑為R,由正弦定理可得,原式等價于2RsinAcosA=2RsinBcosB?sin2A=cos2B?A=B
故△ABC是等腰三角形.
綜上可知,△ABC是等腰直角三角形.
請問:該學(xué)生的解答是否正確?若正確,請?jiān)谙旅鏅M線中寫出解題過程中主要用到的思想方法;若不正確,請?jiān)谙旅鏅M線中寫出你認(rèn)為本題正確的結(jié)果
等腰或直角三角形
等腰或直角三角形

查看答案和解析>>

在等差數(shù)列{an}中,a1=3,其前n項(xiàng)和為Sn,等比數(shù)列{bn}的各項(xiàng)均為正數(shù),b1=1,公比為q,且b2+ S2=12,.(Ⅰ)求an 與bn;(Ⅱ)設(shè)數(shù)列{cn}滿足,求{cn}的前n項(xiàng)和Tn.

【解析】本試題主要是考查了等比數(shù)列的通項(xiàng)公式和求和的運(yùn)用。第一問中,利用等比數(shù)列{bn}的各項(xiàng)均為正數(shù),b1=1,公比為q,且b2+ S2=12,,可得,解得q=3或q=-4(舍),d=3.得到通項(xiàng)公式故an=3+3(n-1)=3n, bn=3 n-1.     第二問中,,由第一問中知道,然后利用裂項(xiàng)求和得到Tn.

解: (Ⅰ) 設(shè):{an}的公差為d,

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921190757897157/SYS201206192120143914538050_ST.files/image003.png">解得q=3或q=-4(舍),d=3.

故an=3+3(n-1)=3n, bn=3 n-1.                       ………6分

(Ⅱ)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921190757897157/SYS201206192120143914538050_ST.files/image004.png">……………8分

 

查看答案和解析>>

已知,函數(shù)

(1)當(dāng)時,求函數(shù)在點(diǎn)(1,)的切線方程;

(2)求函數(shù)在[-1,1]的極值;

(3)若在上至少存在一個實(shí)數(shù)x0,使>g(xo)成立,求正實(shí)數(shù)的取值范圍。

【解析】本試題中導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。(1)中,那么當(dāng)時,  又    所以函數(shù)在點(diǎn)(1,)的切線方程為;(2)中令   有 

對a分類討論,和得到極值。(3)中,設(shè),,依題意,只需那么可以解得。

解:(Ⅰ)∵  ∴

∴  當(dāng)時,  又    

∴  函數(shù)在點(diǎn)(1,)的切線方程為 --------4分

(Ⅱ)令   有 

①         當(dāng)

(-1,0)

0

(0,

,1)

+

0

0

+

極大值

極小值

的極大值是,極小值是

②         當(dāng)時,在(-1,0)上遞增,在(0,1)上遞減,則的極大值為,無極小值。 

綜上所述   時,極大值為,無極小值

時  極大值是,極小值是        ----------8分

(Ⅲ)設(shè),

求導(dǎo),得

,    

在區(qū)間上為增函數(shù),則

依題意,只需,即 

解得  (舍去)

則正實(shí)數(shù)的取值范圍是(,

 

查看答案和解析>>


同步練習(xí)冊答案