(2012•普陀區(qū)一模)給出問題:已知△ABC滿足a•cosA=b•cosB,試判斷△ABC的形狀,某學(xué)生的解答如下:
(i)a•
b2+c2-a2
2bc
=b•
a2+c2-b2
2ac
?a2(b2+c2-a2)=b2(a2+c2-b2)?(a2-b2)•c2=(a2-b2)(a2+b2)?c2=a2+b2
故△ABC是直角三角形.
(ii)設(shè)△ABC外接圓半徑為R,由正弦定理可得,原式等價于2RsinAcosA=2RsinBcosB?sin2A=cos2B?A=B
故△ABC是等腰三角形.
綜上可知,△ABC是等腰直角三角形.
請問:該學(xué)生的解答是否正確?若正確,請在下面橫線中寫出解題過程中主要用到的思想方法;若不正確,請在下面橫線中寫出你認(rèn)為本題正確的結(jié)果
等腰或直角三角形
等腰或直角三角形
分析:(i)利用余弦定理將角化為邊,即可得到結(jié)論;(ii)由正弦定理,將邊化為角,可得結(jié)論.
解答:解:不正確,解答的兩種方法都可得出結(jié)論,但都不完整.
(i)a•
b2+c2-a2
2bc
=b•
a2+c2-b2
2ac
?a2(b2+c2-a2)=b2(a2+c2-b2)?(a2-b2)•c2=(a2-b2)(a2+b2)?c2=a2+b2或a2-b2=0,故△ABC是等腰或直角三角形;
(ii)設(shè)△ABC外接圓半徑為R,由正弦定理可得,原式等價于2RsinAcosA=2RsinBcosB?sin2A=sin2B?A=B或A+B=
π
2
,故△ABC是等腰或直角三角形;
故答案為:等腰或直角三角形
點評:本題考查三角形形狀的判斷,解題的關(guān)鍵是利用余弦定理、正弦定理進(jìn)行邊角互化.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•普陀區(qū)一模)
e
1
,
e
2
是兩個不共線的向量,已知
AB
=2
e
1
+k
e
2
,
CB
=
e
1
+3
e
2
CD
=2
e
1
-
e
2
,且A,B,D三點共線,則實數(shù)k=
-8
-8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•普陀區(qū)一模)設(shè)全集為R,集M={x|
x2
4
+y2=1
},N={x|
x-3
x+1
≤0
},則集合{x|(x+
3
2
)
2
+y2=
1
4
}可表示為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•普陀區(qū)一模)已知數(shù)列{an}是首項為2的等比數(shù)列,且滿足an+1=pan+2n(n∈N*)
(1)求常數(shù)p的值和數(shù)列{an}的通項公式;
(2)若抽去數(shù)列中的第一項、第四項、第七項、…第3n-2項,…,余下的項按原來的順序組成一個新的數(shù)列{bn},試寫出數(shù)列
{bn}的通項公式;
(3)在(2)的條件下,設(shè)數(shù)列{bn}的前n項和為Tn,是否存在正整數(shù)n,使得
Tn+1
Tn
=
11
3
?若存在,試求所有滿足條件的正整數(shù)n的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•普陀區(qū)一模)對于平面α、β、γ和直線a、b、m、n,下列命題中真命題是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•普陀區(qū)一模)函數(shù)y=
1
log
1
2
|x-1|
的定義域是
(0,1)∪(1,2)
(0,1)∪(1,2)

查看答案和解析>>

同步練習(xí)冊答案