題目列表(包括答案和解析)
(本小題滿分14分)
已知橢圓C:,左焦點(diǎn),且離心率
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線與橢圓C交于不同的兩點(diǎn)(不是左、右頂點(diǎn)),且以為直徑的圓經(jīng)過(guò)橢圓C的右頂點(diǎn)A. 求證:直線過(guò)定點(diǎn),并求出定點(diǎn)的坐標(biāo).
(本小題滿分14分)
已知橢圓C:,左焦點(diǎn),且離心率
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線與橢圓C交于不同的兩點(diǎn)(不是左、右頂點(diǎn)),且以為直徑的圓經(jīng)過(guò)橢圓C的右頂點(diǎn)A. 求證:直線過(guò)定點(diǎn),并求出定點(diǎn)的坐標(biāo).
(本小題滿分14分)
已知拋物線、橢圓、雙曲線都經(jīng)過(guò)點(diǎn)M(1,2),它們?cè)趚軸上有共同焦點(diǎn),橢圓和雙曲線的對(duì)稱軸是坐標(biāo)軸,拋物線的頂點(diǎn)為坐標(biāo)原點(diǎn)。
(Ⅰ)求這三條曲線方程;
(Ⅱ)若定點(diǎn)P(3,0),A為拋物線上任意一點(diǎn),是否存在垂直于x軸的直線l被以AP為直徑的圓截得的弦長(zhǎng)為定值?若存在,求出l的方程;若不存在,說(shuō)明理由。
(本小題滿分14分)
已知橢圓的焦點(diǎn)F與拋物線C:的焦點(diǎn)關(guān)于直線x-y=0
對(duì)稱.
(Ⅰ)求拋物線的方程;
(Ⅱ)已知定點(diǎn)A(a,b),B(-a,0)(ab),M是拋物線C上的點(diǎn),設(shè)直線AM,
BM與拋物線的另一交點(diǎn)為.求證:當(dāng)M點(diǎn)在拋物線上變動(dòng)時(shí)(只要存在
且)直線恒過(guò)一定點(diǎn),并求出這個(gè)定點(diǎn)的坐標(biāo).
高考資源網(wǎng)版權(quán)所有
一、DBCCC DCADB
二、11.72 12. 13. 14. 15.
三、16.(Ⅰ).
∵,∴,∴,∴當(dāng)時(shí),f(A)取最小值.
(Ⅱ)由(Ⅰ)知, 時(shí), .于是,
由得.
17.(Ⅰ)設(shè)“從甲盒內(nèi)取出的2個(gè)球均為黑球”為事件,“從乙盒內(nèi)取出的2個(gè)球均為黑球”為事件.由于事件相互獨(dú)立,且,.
故取出的4個(gè)球均為黑球的概率為.
(Ⅱ)設(shè)“從甲盒內(nèi)取出的2個(gè)球均為黑球;從乙盒內(nèi)取出的2個(gè)球中,1個(gè)是紅球,1個(gè)是黑球”為事件,“從甲盒內(nèi)取出的2個(gè)球中,1個(gè)是紅球,1個(gè)是黑球;從乙盒內(nèi)取出的2個(gè)球均為黑球”為事件.由于事件互斥,
且,.
故取出的4個(gè)球中恰有1個(gè)紅球的概率為.
(Ⅲ)取出的4個(gè)球中紅球的個(gè)數(shù)為0,1,2,3時(shí)的概率分別記為.由(Ⅰ),(Ⅱ)得,,.從而.
18.(I)∵AB∥CD,AD=DC=CB=a,∴四邊形ABCD是等腰梯形.設(shè)AC交BD于N,連EN.
∵∠ABC=60°,∴∠DCB=∠ADC=120°,∠DAC=∠ACD=30°,
∴AC=,AB=2a,=90°.
又四邊形ACEF是矩形,
∴AC⊥平面BCE.∴AC⊥BE.
(II)∵平面ACEF⊥平面ABCD, EC⊥AC,
∴EC⊥面 ABCD,∴EC⊥CD, EC⊥AD,又AF∥CE,
∴AF⊥AD,而AF=CE,AD=CD,
∴Rt△≌Rt△,DE=DF.
過(guò)D作DG⊥EF于G,則G為EF的中點(diǎn),于是EG=.
在Rt△中,,∴.∴.
設(shè)所求二面角大小為,則由及,得,,
www.ks5u.com
.21.(I)由于橢圓過(guò)定點(diǎn)A(1,0),于是a=1,c=.
∵ ,∴.
(Ⅱ)解方程組,得.
∵,∴.
(Ⅲ)設(shè)拋物線方程為:.
又∵,∴.
又,得.
令.
∵內(nèi)有根且單調(diào)遞增,
∴
∴
故.
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com