(1)求數(shù)列{}的通項公式, 查看更多

 

題目列表(包括答案和解析)





⑴求數(shù)列的通項公式;
⑵設(shè),若恒成立,求實(shí)數(shù)的取值范圍;
⑶是否存在以為首項,公比為的數(shù)列,,使得數(shù)列中每一項都是數(shù)列中不同的項,若存在,求出所有滿足條件的數(shù)列的通項公式;若不存在,說明理由

查看答案和解析>>

數(shù)列的通項公式

(1)求:f(1)、f(2)、f(3)、f(4)的值;

(2)由上述結(jié)果推測出計算f(n)的公式,并用數(shù)學(xué)歸納法加以證明.

查看答案和解析>>

設(shè)數(shù)列的通項公式為。數(shù)列定義如下:對于正整數(shù)m,是使得不等式成立的所有n中的最小值。  (1)若,求b3;   (2)若,求數(shù)列的前2m項和公式;(3)是否存在p和q,使得?如果存在,求p和q的取值范圍;如果不存在,請說明理由。

查看答案和解析>>

設(shè)數(shù)列的通項公式為。數(shù)列定義如下:對于正整數(shù)m,是使得不等式成立的所有n中的最小值。

   (1)若,求b3;

   (2)若,求數(shù)列的前2m項和公式;

   (3)是否存在p和q,使得?如果存在,求p和q的取值范圍;如果不存在,請說明理由。

查看答案和解析>>

設(shè)數(shù)列的通項公式為。數(shù)列定義如下:對于正整數(shù)m,是使得不等式成立的所有n中的最小值。 (1)若,求b3;  (2)若,求數(shù)列的前2m項和公式;(3)是否存在p和q,使得?如果存在,求p和q的取值范圍;如果不存在,請說明理由。

查看答案和解析>>

 

一、選擇題(每小題5 分,共40 分)

DACDA  DBA

二、填空題(每小題5 分,共35分)

9.     10.400     11.180    12.②④

13.     14.(i)(3分)    (ii)(2分)

15.(i)(3分);    (ii) (2分)

16.(1)

當(dāng)

 ……………………4分

(2)令 ………………6分

解得:

所以,的單調(diào)遞增區(qū)間是…………8分

(3)由,……………………10分

所以,

解得:

所以,的取值集合……12分

17.解:(1)坐A 班車的三人中恰有2 人正點(diǎn)到達(dá)的概率為

P3(2)= C0.72×0.31 = 0.441 ……………………(6 分)

(2)記“A 班車正點(diǎn)到達(dá)”為事件M,“B 班車正點(diǎn)到達(dá)冶為事件N

則兩人中至少有一人正點(diǎn)到達(dá)的概率為

P = P(M?N)+ P(M?)+ P(?N)

= 0.7 ×0.75 + 0.7 ×0.25 + 0.3 ×0.75 = 0.525 + 0.175 + 0.225 = 0.925 (12 分)

18.解:由已知得

所以數(shù)列{}是以1為首項,公差為1的等差數(shù)列;(2分)

=1+…………………………4分

(2)由(1)知 ……………………6分

 …………………………8分

 ……………………10分

所以:…………………………12分

19.解:M、N、Q、B的位置如右圖示。(正確標(biāo)出給1分)

(1)∵ND//MB且ND=MB

∴四邊形NDBM為平行四邊形

∴MN//DB………………3分

∴BD平面PBD,MN

∴MN//平面PBD……………………4分

(2)∵QC⊥平面ABCD,BD平面ABCD,

∴BD⊥QC……………………5分

又∵BD⊥AC,

∴BD⊥平面AQC…………………………6分

∵AQ面AQC

∴AQ⊥BD,同理可得AQ⊥PB,

∵BDPD=B

∴AQ⊥面PDB……………………………8分

          ∵在正方體中,PB=PB

          ∴PE⊥DB……………………10分

          ∵四邊形NDBM為矩形

          ∴EF⊥DB

          ∴∠PEF為二面角P―DB―M為平面角………………11分

          ∵EF⊥平面PMN

          ∴EF⊥PF

          設(shè)正方體的棱長為a,則在直角三角形EFP中

          …………………………13分

          解法2:設(shè)正方體的棱長為a,

          以D為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系如圖:

          則點(diǎn)A(a,0,0),P(a,0,a),Q(0,a,a)…………9分

          ………………10分

          ∵PQ⊥面DBM,由(2)知AQ⊥面PDB

          分別為平面PDB、平面DBM的法向量

          ……………………12分

          ………………13分

          20.解:(1)由題意,可設(shè)橢圓的標(biāo)準(zhǔn)方程為……1分

          的焦點(diǎn)為F(1,0)

          ……………………3分

          所以,橢圓的標(biāo)準(zhǔn)方程為

          其離心率為 ……………………5分

          (2)證明:∵橢圓的右準(zhǔn)線1的方程為:x=2,

          ∴點(diǎn)E的坐標(biāo)為(2,0)設(shè)EF的中點(diǎn)為M,則

          若AB垂直于x軸,則A(1,y1),B(1,-y1),C(2,-y1

          ∴AC的中點(diǎn)為

          ∴線段EF的中點(diǎn)與AC的中點(diǎn)重合,

          ∴線段EF被直線AC平分,…………………………6分

          若AB不垂直于x軸,則可設(shè)直線AB的方程為

          …………………………7分

          ………………8分

          則有………………9分

          ……………………10分

          ∴A、M、C三點(diǎn)共線,即AC過EF的中點(diǎn)M,

          ∴線段EF被直線AC平分。………………………………13分

          21.解:(1)依題意,

          …………………………3分

          (2)若在區(qū)間(―2,3)內(nèi)有兩個不同的極值點(diǎn),則方程在區(qū)間(―2,3)內(nèi)有兩個不同的實(shí)根,

          但a=0時,無極值點(diǎn),

          ∴a的取值范圍為……………………8分

          (3)在(1)的條件下,a=1,要使函數(shù)的圖象恰有三個交點(diǎn),等價于方程

          即方程恰有三個不同的實(shí)根。

          =0是一個根,

          *        應(yīng)使方程有兩個非零的不等實(shí)根,

          ………………12分

          *存在的圖象恰有三個交點(diǎn)…………………………13分

           


          同步練習(xí)冊答案