查看更多

 

題目列表(包括答案和解析)

1、集合A={-1,0,1},B={-2,-1,0},則A∪B=
{-2,-1,0,1}

查看答案和解析>>

2、命題“存在x∈R,使得x2+2x+5=0”的否定是
對(duì)任意x∈R,都有x2+2x+5≠0

查看答案和解析>>

3、在等差數(shù)列{an}中,a2+a5=19,S5=40,則a10
29

查看答案和解析>>

5、函數(shù)y=a2-x+1(a>0,a≠1)的圖象恒過(guò)定點(diǎn)P,則點(diǎn)P的坐標(biāo)為
(2,2)

查看答案和解析>>

 

一、選擇題(每小題5分,共12小題,滿(mǎn)分60分)

2,4,6

二、填空題(每小題4分,共4小題,滿(mǎn)分16分)

13.     14.84      15.

16.

三、解答題

17.解:(1)…………………………2分

(2)由題意,令

∴從晚上1點(diǎn)至5點(diǎn),或上午13點(diǎn)至17點(diǎn),為所求時(shí)間,共8小時(shí),……12分

18.解:由框圖可知

 

(1)由題意可知,k=5時(shí),

(3)由(2)可得:

19.證明:(1)連結(jié)AC、BD、A1C1則AC、BD的交點(diǎn),O1

<tt id="rie7t"><tbody id="rie7t"></tbody></tt>
  • <dl id="rie7t"><label id="rie7t"></label></dl><tfoot id="rie7t"><thead id="rie7t"></thead></tfoot>
    <dl id="rie7t"><label id="rie7t"><output id="rie7t"></output></label></dl>
      <li id="rie7t"><tr id="rie7t"><sub id="rie7t"></sub></tr></li>
    • <tfoot id="rie7t"><label id="rie7t"></label></tfoot>
        <button id="rie7t"></button>
        <button id="rie7t"><thead id="rie7t"></thead></button>

        ∴四邊形ACC1A1為平行四邊形,

        ∴四邊形A1O1CO為平行四邊形…………2分

        ∴A1O//CO1

        ∵A1O⊥平面ABCD

        ∴O1C⊥平面ABCD…………………………4分

        ∵O1C平面O1DC

        ∴存在點(diǎn)平面O1DC⊥平面ABCD……………5分

        (2)F為BC的三等分點(diǎn)B(靠近B)時(shí),有EF⊥BC……………………6分

        過(guò)點(diǎn)E作EH⊥AC于H,連FH、EF//A1O

        ∵平面A1AO⊥平面ABCD

        ∴EH⊥平面ABCD

        又BC平面ABCD   ∴BC⊥EH ①

        ∴HF//AB     ∴HF⊥BC, ②

        由①②知,BC⊥平面EFH

        ∵EF平面EFH    ∴EF⊥BC…………………………12分

        20.解:(1)當(dāng)0<x≤10時(shí),

        (2)①當(dāng)0<x≤10時(shí),

        ②當(dāng)x>10時(shí),

        (萬(wàn)元)

        (當(dāng)且僅當(dāng)時(shí)取等號(hào))……………………………………………………10分

        綜合①②知:當(dāng)x=9時(shí),y取最大值………………………………………………11分

        故當(dāng)年產(chǎn)量為9萬(wàn)件時(shí),服裝廠(chǎng)在這一品牌服裝的生產(chǎn)中獲年利潤(rùn)最大…………12分

        21.解:(1)

        又x1,x2是函數(shù)f(x)的兩個(gè)極值點(diǎn),則x1,x2的兩根,

        (2)由題意,

        22.解:(1)設(shè)橢圓方程為………………………………1分

        ………………………………………………3分

        ∴橢圓方程為…………………………………………………………4分

        (2)∵直線(xiàn)l平行于OM,且在y軸上的截距為m

        又KOM=

        ……………………………………………………5分

        ……………………………………6分

        ∵直線(xiàn)l與橢圓交于A、B兩個(gè)不同點(diǎn),

        (3)設(shè)直線(xiàn)MA、MB的斜率分別為k1,k2,只需證明k1+k2=0即可…………9分

        設(shè)……………………10分

        ……………………………………………………10分

        故直線(xiàn)MA、MB與x軸始終圍成一個(gè)等腰三角形.……………………14分

         

         

         


        同步練習(xí)冊(cè)答案
        <button id="rie7t"><center id="rie7t"><dfn id="rie7t"></dfn></center></button>