27.用求數(shù)列的通項公式時.an一般是分段形式對嗎?你注意到了嗎? 查看更多

 

題目列表(包括答案和解析)

(09年東城區(qū)二模理)(14分)

已知函數(shù)(其中為常數(shù),).利用函數(shù)構造一個數(shù)列,方法如下:

對于給定的定義域中的,令,,…,,…

在上述構造過程中,如果=1,2,3,…)在定義域中,那么構造數(shù)列的過程繼續(xù)下去;如果不在定義域中,那么構造數(shù)列的過程就停止.

  (Ⅰ)當時,求數(shù)列的通項公式;

    (Ⅱ)如果可以用上述方法構造出一個常數(shù)列,求的取值范圍;

   (Ⅲ)是否存在實數(shù),使得取定義域中的任一實數(shù)值作為,都可用上述方法構造出一個無窮數(shù)列  ?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

在等差數(shù)列中,,,其中是數(shù)列的前項之和,曲線的方程是,直線的方程是

求數(shù)列的通項公式;

當直線與曲線相交于不同的兩點,時,令,

的最小值;

對于直線和直線外的一點P,用“上的點與點P距離的最小值”定義點P到直線的距離與原有的點到直線距離的概念是等價的,若曲線與直線不相交,試以類似的方式給出一條曲線與直線間“距離”的定義,并依照給出的定義,在中自行選定一個橢圓,求出該橢圓與直線的“距離”.

查看答案和解析>>

(本小題滿分12分)

已知是首項為19,公差為-2的等差數(shù)列,的前項和.

(1)當n為何值時最大(用兩種方法);

(2)設是首項為1,公比為3的等比數(shù)列,求數(shù)列的通項公式及其前項和。

查看答案和解析>>

數(shù)列,滿足

(1)求,并猜想通項公式

(2)用數(shù)學歸納法證明(1)中的猜想。

【解析】本試題主要考查了數(shù)列的通項公式求解,并用數(shù)學歸納法加以證明。第一問利用遞推關系式得到,,并猜想通項公式

第二問中,用數(shù)學歸納法證明(1)中的猜想。

①對n=1,等式成立。

②假設n=k時,成立,

那么當n=k+1時,

,所以當n=k+1時結論成立可證。

數(shù)列,滿足

(1),,并猜想通項公。  …4分

(2)用數(shù)學歸納法證明(1)中的猜想。①對n=1,等式成立。  …5分

②假設n=k時,成立,

那么當n=k+1時,

,             ……9分

所以

所以當n=k+1時結論成立                     ……11分

由①②知,猜想對一切自然數(shù)n均成立

 

查看答案和解析>>

某市投資甲、乙兩個工廠,2011年兩工廠的產(chǎn)量均為100萬噸,在今后的若干年內,甲工廠的年產(chǎn)量每年比上一年增加10萬噸,乙工廠第年比上一年增加萬噸,記2011年為第一年,甲、乙兩工廠第年的年產(chǎn)量分別為萬噸和萬噸.

(Ⅰ)求數(shù)列,的通項公式;

(Ⅱ)若某工廠年產(chǎn)量超過另一工廠年產(chǎn)量的2倍,則將另一工廠兼并,問到哪一年底,其中哪一個工廠被另一個工廠兼并.

【解析】本試題主要考查數(shù)列的通項公式的運用。

第一問由題得an=10n+90,bn=100+2+22+23+…+2n-1=100+2(1-2n-1)/ 1-2 =2n+98

第二問,考查等差數(shù)列與等比數(shù)列的綜合,考查用數(shù)列解決實際問題,其步驟是建立數(shù)列模型,進行計算得出結果,再反饋到實際中去解決問題.由于比較兩個工廠的產(chǎn)量時兩個函數(shù)的形式較特殊,不易求解,故采取了列舉法,數(shù)據(jù)列舉時作表格比較簡捷.

解:(Ⅰ)由題得an=10n+90,bn=100+2+22+23+…+2n-1=100+2(1-2n-1)/ 1-2 =2n+98……6分

(Ⅱ)由于n,各年的產(chǎn)量如下表 

n       1     2    3      4     5     6     7     8    

an      100   110   120   130   140   150  160   170

bn      100   102    106  114   130   162   226   354

2015年底甲工廠將被乙工廠兼并

 

查看答案和解析>>


同步練習冊答案