(理)已知函數(為自然對數的底數).(為常數).是實數集上的奇函數. 查看更多

 

題目列表(包括答案和解析)

已知函數.(為自然對數的底)

(Ⅰ)求的最小值;

(Ⅱ)是否存在常數使得對于任意的正數恒成立?若存在,求出的值;若不存在,說明理由.

 

查看答案和解析>>

已知函數 ()(為自然對數的底數)

(1)求的極值

(2)對于數列,   ()

①   證明:

②  考察關于正整數的方程是否有解,并說明理由

 

 

查看答案和解析>>

已知函數為自然對數的底數).
(1)求函數上的單調區(qū)間;
(2)設函數,是否存在區(qū)間,使得當時函數的值域為,若存在求出,若不存在說明理由.

查看答案和解析>>

已知函數 ()(為自然對數的底數)
(1)求的極值
(2)對于數列,   ()
①  證明:
② 考察關于正整數的方程是否有解,并說明理由

查看答案和解析>>

已知函數為自然對數的底數).
(1)求函數上的單調區(qū)間;
(2)設函數,是否存在區(qū)間,使得當時函數的值域為,若存在求出,若不存在說明理由.

查看答案和解析>>

一、選擇題

1、B(A)   2、C        3、A(C)       4、D         5、D          6、C(D)  

7、B         8、B        9、C          10、B        11、B        12、A(C)

二、填空題

13、6          14、           15、31           16、

三、解答題

17、解:⑴由

       由 

        

       ∴函數的最小正周期T= …………………6分

       ⑵由

       ∴fx)的單調遞減區(qū)間是

       ⑶,∴奇函數的圖象左移 即得到的圖象,

故函數的圖象右移后對應的函數成為奇函數.…………………12分

18、(文)解:(1),又. ∴,.

(2)至少需要3秒鐘可同時到達點.

到達點的概率. 到達點的概率.

     故所求的概率.

(理)解:(Ⅰ)的概率分布為

1.2

1.18

1.17

由題設得,即的概率分布為

0

1

2

的概率分布為

1.3

1.25

0.2

所以的數學期望

(Ⅱ)由

,∴

 

19、解:(1)取中點,連結,∵的中點,的中點.

  所以,所以………………………… 2分

平面,所以平面………………………………………… 4分

(2)分別在兩底面內作,,連結,易得,以為原點,軸,軸,軸建立直角坐標系,

,則……………………………………………………… 5分

  .

易求平面的法向量為…………………………………………… 7分

設平面的法向量為

,由…………… 9分

  ∴…………… 11分

由題知 ∴

所以在上存在點,當是直二面角.…………… 12分

20、解:(1)由,得,兩式相減,得,∴,∵是常數,且,故

為不為0的常數,∴是等比數列.

(2)由,且時,,得

,∴是以1為首項,為公差的等差數列,

,故.

(3)由已知,∴

相減得:,∴,

遞增,∴,均成立,∴∴,又,∴最大值為7.

21、(文)解:(Ⅰ)因為

                      

             又  

             因此    

             解方程組得 

         (Ⅱ)因為     

             所以     

             令      

             因為    

                     

             所以     在(-2,0)和(1,+)上是單調遞增的;

                           在(-,-2)和(0,1)上是單調遞減的.

         (Ⅲ)由(Ⅰ)可知         

            

 

(理)(1)證:令,令

            時,.  ∴

             ∴ 即.

  (2)∵是R上的奇函數  ∴  ∴

       ∴  ∴  故.

       故討論方程的根的個數.

       即的根的個數.

       令.注意,方程根的個數即交點個數.

        對, ,

        令, 得,

         當時,; 當時,.  ∴,

         當時,;   當時,, 但此時

,此時以軸為漸近線。

       ①當時,方程無根;

②當時,方程只有一個根.

③當時,方程有兩個根.

 (3)由(1)知,   令,

      ∴,于是,

      ∴

         .

22、(文)22.解:(1)在中,

.  (小于的常數)

故動點的軌跡是以,為焦點,實軸長的雙曲線.方程為

(2)方法一:在中,設,,,

假設為等腰直角三角形,則

由②與③得:,

由⑤得:

,

故存在滿足題設條件.

方法二:(1)設為等腰直角三角形,依題設可得:

所以,

.①

,可設,

,

.②

由①②得.③

根據雙曲線定義可得,

平方得:.④

由③④消去可解得,

故存在滿足題設條件.

 

 

 

 

(理)解:(1) 

,

    于是,所求“果圓”方程為

    ,.                    

(2)由題意,得  ,即

         ,,得.  

     又.  .                                             

(3)設“果圓”的方程為,

    記平行弦的斜率為

時,直線與半橢圓的交點是

,與半橢圓的交點是

 的中點滿足  得 .  

     , 

    綜上所述,當時,“果圓”平行弦的中點軌跡總是落在某個橢圓上. 

    當時,以為斜率過的直線與半橢圓的交點是.  

由此,在直線右側,以為斜率的平行弦的中點軌跡在直線上,即不在某一橢圓上.   當時,可類似討論得到平行弦中點軌跡不都在某一橢圓上.

 


同步練習冊答案