的條件下.求函數(shù)在點(diǎn)處的切線方程, 查看更多

 

題目列表(包括答案和解析)

函數(shù)f(x)=x3+ax2+bx+c,曲線y=f(x)上以點(diǎn)P(1,f(1))為切點(diǎn)的切線方程為y=3x+1.
(1)若y=f(x)在x=-2時(shí)有極值,求f (x)的表達(dá)式;
(2)在(1)的條件下,求y=f(x)在[-3,1]上最大值.

查看答案和解析>>

函數(shù)f(x)=k•a-x(k,a為常數(shù),a>0且a≠1)的圖象過(guò)點(diǎn)A(0,1),B(3,8)
(1)求函數(shù)f(x)的解析式;
(2)若函數(shù)g(x)=
f(x)+bf(x)-1
是奇函數(shù),求b的值;
(3)在(2)的條件下判斷函數(shù)g(x)的單調(diào)性,并用定義證明你的結(jié)論.

查看答案和解析>>

函數(shù)f(x)=x3+ax2+bx+5,過(guò)曲線y=f(x) 上的點(diǎn)P(1,f(1))的切線斜率為3.
(1)若y=f(x)在x=-2時(shí)有極值,求f(x)的表達(dá)式;
(2)在(1)的條件下,求y=f(x)在[-3,1]上最大值.

查看答案和解析>>

函數(shù)f(x)=xlnx,g(x)=x3+ax2-x+2
(1)如果函數(shù)g(x)單調(diào)減區(qū)間為(-
13
,1),求函數(shù)g(x)解析式;
(2)在(1)的條件下,求函數(shù)y=g(x)圖象過(guò)點(diǎn)p(1,1)的切線方程;
(3)若?x0∈(0,+∞),使關(guān)于x的不等式2f(x)≥g′(x)+2成立,求實(shí)數(shù)a取值范圍.

查看答案和解析>>

函數(shù)f(x)=ax3+bx2+(c-3a-2b)x+d的圖象如圖所示.
(1)若函數(shù)f(x)在x=2處的切線方程為3x+y-11=0,求函數(shù)f(x)的解析式
(2)在(1)的條件下,是否存在實(shí)數(shù)m,使得y=f(x)的圖象與y=
13
f′(x)+5x+m
的圖象有且只有三個(gè)不同的交點(diǎn)?若存在,求出m的取值范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

一、選擇題:每小題5分,滿分60.

題號(hào)

1

2

3

4

5

6

7

8

9

10

11

12

答案

B

C

A

A

A

A

B

D

D

B

C

C

二、填空題:每小題5分,滿分20.

13.

14. 

15.

16.①③④

三、解答題

17.設(shè)兩個(gè)實(shí)數(shù)為a,b,,,建立平面直角坐標(biāo)系aOb, 則點(diǎn)在正方形OABC內(nèi)       ……… 2分

(Ⅰ) 記事件A“兩數(shù)之和小于1.2”,即,則滿足條件的點(diǎn)在多邊形OAEFC內(nèi)

所以                                    ……… 6分

(Ⅱ) 記事件B“兩數(shù)的平方和小于0.25”,則滿足條件的點(diǎn)在扇形內(nèi)

所以                                                                    ………10分

18.∵m?n                                ……… 4分

  再由余弦定理得:

(Ⅰ)由,故                      ……… 8分

(Ⅱ)由

解得,所以的取值范圍是         ………12分

19.(Ⅰ)連接,交,易知、中點(diǎn),故在△中,為邊的中位線,故,平面平面,所以∥平面            ……… 5分

(Ⅱ)在平面內(nèi)過(guò)點(diǎn),垂足為H,

∵平面⊥平面,且平面∩平面

⊥平面,∴,                                 ……… 8分

又∵,中點(diǎn),∴

⊥平面,∴,又∵,

⊥平面.                                                           ………12分

20.(Ⅰ)∵是各項(xiàng)均為正數(shù)的等差數(shù)列,且公差

 ∴           ……… 3分

為常數(shù),∴是等差數(shù)列           ……… 5分

(Ⅱ)∵,∴

是公差為1的等差數(shù)列                                       ……… 7分

,∴       ……… 9分

當(dāng)時(shí),                                   ………10分

當(dāng)時(shí),

綜上,                                                               ………12分

21.(Ⅰ)                                                                       ……… 4分

(Ⅱ)由橢圓的對(duì)稱性知:PRQS為菱形,原點(diǎn)O到各邊距離相等……… 5分

⑴當(dāng)P在y軸上時(shí),易知R在x軸上,此時(shí)PR方程為,

.                                                       ……… 6分

⑵當(dāng)P在x軸上時(shí),易知R在y軸上,此時(shí)PR方程為,

.                                                       ……… 7分

⑶當(dāng)P不在坐標(biāo)軸上時(shí),設(shè)PQ斜率為k,、

P在橢圓上,.......①;R在橢圓上,......②

利用Rt△POR可得                               ……… 9分

即 

整理得 .                                               ………11分

再將①②帶入,得

綜上當(dāng)時(shí),有.                                       ………12分

22.(Ⅰ)∵,且,∴

∴在上, 變化情況如下表:

x

 

 

b

                                                                                            ……… 2分

∵函數(shù)上的最大值為1,

,此時(shí)應(yīng)有

,                                                                  ……… 4分

(Ⅱ)                                                                             ……… 6分

所求切線方程為                                             ……… 8分

(Ⅲ)                                   ………10分

設(shè)

     

∴當(dāng)時(shí),函數(shù)的無(wú)極值點(diǎn)

當(dāng)時(shí),函數(shù)有兩個(gè)極值點(diǎn)                 ………12分

 

 


同步練習(xí)冊(cè)答案