函數(shù)f(x)=x3+ax2+bx+5,過曲線y=f(x) 上的點P(1,f(1))的切線斜率為3.
(1)若y=f(x)在x=-2時有極值,求f(x)的表達(dá)式;
(2)在(1)的條件下,求y=f(x)在[-3,1]上最大值.
分析:(1)求導(dǎo)函數(shù),利用曲線y=f(x)在P(1,f(1))的切線斜率為3,在x=-2時有極值,建立方程,求得a,b的值,即可求得f(x)的表達(dá)式;
(2)確定函數(shù)的單調(diào)性,求出極值與端點函數(shù)值比較,即可求y=f(x)在[-3,1]上最大值.
解答:解:(1)∵f(x)=x3+ax2+bx+5,∴f′(x)=3x2+2ax+b
∵曲線y=f(x)在P(1,f(1))的切線斜率為3,在x=-2時有極值,
∴f′(1)=2a+b+3=3,f′(-2)=12-4a+b=0
∴a=2,b=-4,
∴f(x)=x3+2x2-4x+5;
(2)f′(x)=3x2+2ax+b=3x2+4x-4=(3x-2)(x+2)
x [-3,-2) -2 (-2,
2
3
2
3
2
3
,1]
f′(x) + 0 - 0 +
f(x) 極大 極小
∴f(x)極大=f(-2)=(-2)3+2•(-2)2-4•(-2)+5=13
∵f(1)=13+2×1-4×1+5=4,f(-3)=(-3)3+2•(-3)2-4•(-3)+5=8
∴f(x)在[-3,1]上最大值為13.
點評:本題考查導(dǎo)數(shù)知識的運用,考查導(dǎo)數(shù)的幾何意義,考查函數(shù)的極值與最值,考查學(xué)生分析解決問題的能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-x3+ax2+bx+c在(-∞,0)上是減函數(shù),在(0,1)上是增函數(shù),函數(shù)f(x)在R上有三個零點.
(1)求b的值;
(2)若1是其中一個零點,求f(2)的取值范圍;
(3)若a=1,g(x)=f′(x)+3x2+lnx,試問過點(2,5)可作多少條直線與曲線y=g(x)相切?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•東城區(qū)一模)已知函數(shù)f(x)=x3+ax2+bx+c,曲線y=f(x)在點x=1處的切線l不過第四象限且斜率為3,又坐標(biāo)原點到切線l的距離為
10
10
,若x=
2
3
時,y=f(x)有極值.
(1)求a,b,c的值;
(2)求y=f(x)在[-3,1]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•寧波模擬)已知函數(shù)f(x)=x3+ax2-a2x+2,a∈R.
(1)若a<0時,試求函數(shù)y=f(x)的單調(diào)遞減區(qū)間;
(2)若a=0,且曲線y=f(x)在點A、B(A、B不重合)處切線的交點位于直線x=2上,證明:A、B 兩點的橫坐標(biāo)之和小于4;
(3)如果對于一切x1、x2、x3∈[0,1],總存在以f(x1)、f(x2)、f(x3)為三邊長的三角形,試求正實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x3-3ax+b(a≠0),已知曲線y=f(x)在點(2,f(x))處在直線y=8相切.
(Ⅰ)求a,b的值;
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間與極值點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于函數(shù)f(x)=x3+ax2-x+1的極值情況,4位同學(xué)有下列說法:甲:該函數(shù)必有2個極值;乙:該函數(shù)的極大值必大于1;丙:該函數(shù)的極小值必小于1;丁:方程f(x)=0一定有三個不等的實數(shù)根. 這四種說法中,正確的個數(shù)是(  )

查看答案和解析>>

同步練習(xí)冊答案