• <small id="uk4nm"><acronym id="uk4nm"></acronym></small>
    <big id="uk4nm"><acronym id="uk4nm"></acronym></big>
    查看更多

     

    題目列表(包括答案和解析)

    1、集合A={-1,0,1},B={-2,-1,0},則A∪B=
    {-2,-1,0,1}

    查看答案和解析>>

    2、命題“存在x∈R,使得x2+2x+5=0”的否定是
    對(duì)任意x∈R,都有x2+2x+5≠0

    查看答案和解析>>

    3、在等差數(shù)列{an}中,a2+a5=19,S5=40,則a10
    29

    查看答案和解析>>

    5、函數(shù)y=a2-x+1(a>0,a≠1)的圖象恒過定點(diǎn)P,則點(diǎn)P的坐標(biāo)為
    (2,2)

    查看答案和解析>>

     

    一、選擇題(本大題共12個(gè)小題,每小題5分,共60分)

        1―5  CABDC   6―10  DCCBB   11―12AB

    二、填空題:

    13.9

    14.

    15.(1,0)

    16.420

    三、解答題:

    17.解:(1)

       (2)由(1)知,

           

    18.解: 記“第i個(gè)人過關(guān)”為事件Aii=1,2,3),依題意有

        。

       (1)設(shè)“恰好二人過關(guān)”為事件B,則有

        且彼此互斥。

    于是

    =

       (2)設(shè)“有人過關(guān)”事件G,“無人過關(guān)”事件互相獨(dú)立,

      

    19.解法:1:(1)

       (2)過E作EF⊥PC,垂足為F,連結(jié)DF。             (8分)

    由Rt△EFC∽

      解法2:(1)

         (2)設(shè)平面PCD的法向量為

              則

                 解得   

      AC的法向量取為

      角A―PC―D的大小為

      20.(1)由已知得    

        是以a2為首項(xiàng),以

          (6分)

         (2)證明:

         

         (2)證明:由(1)知,

       

      21.解:(1)

      又直線

      (2)由(1)知,列表如下:

      x

      f

      +

      0

      0

      +

      fx

      學(xué)科網(wǎng)(Zxxk.Com)

      極大值

      學(xué)科網(wǎng)(Zxxk.Com)

      極小值

      學(xué)科網(wǎng)(Zxxk.Com)

       

        所以,函數(shù)fx)的單調(diào)增區(qū)間是

       

      22.解:(1)設(shè)直線l的方程為

      因?yàn)橹本l與橢圓交點(diǎn)在y軸右側(cè),

      所以  解得2

      l直線y截距的取值范圍為。          (4分)

         (2)①(Ⅰ)當(dāng)AB所在的直線斜率存在且不為零時(shí),

      設(shè)AB所在直線方程為

      解方程組           得

      所以

      設(shè)

      所以

      因?yàn)?i>l是AB的垂直平分線,所以直線l的方程為

       

      因此

         又

         (Ⅱ)當(dāng)k=0或不存在時(shí),上式仍然成立。

      綜上所述,M的軌跡方程為(λ≠0)。  (9分)

      ②當(dāng)k存在且k≠0時(shí),由(1)得

        解得

      所以

       

      解法:(1)由于

      當(dāng)且僅當(dāng)4+5k2=5+4k2,即k≠±1時(shí)等號(hào)成立,

      此時(shí),

       

      當(dāng)

      當(dāng)k不存在時(shí),

       

      綜上所述,                      (14分)

      解法(2):

      因?yàn)?sub>

      當(dāng)且僅當(dāng)4+5k2=5+4k2,即k≠±1時(shí)等號(hào)成立,

      此時(shí)。

      當(dāng)

      當(dāng)k不存在時(shí),

      綜上所述,

       

       

       

       


      同步練習(xí)冊(cè)答案