由此可知:當時.有.此時為單調增函數(shù), 查看更多

 

題目列表(包括答案和解析)

已知函數(shù).(

(1)若在區(qū)間上單調遞增,求實數(shù)的取值范圍;

(2)若在區(qū)間上,函數(shù)的圖象恒在曲線下方,求的取值范圍.

【解析】第一問中,首先利用在區(qū)間上單調遞增,則在區(qū)間上恒成立,然后分離參數(shù)法得到,進而得到范圍;第二問中,在區(qū)間上,函數(shù)的圖象恒在曲線下方等價于在區(qū)間上恒成立.然后求解得到。

解:(1)在區(qū)間上單調遞增,

在區(qū)間上恒成立.  …………3分

,而當時,,故. …………5分

所以.                 …………6分

(2)令,定義域為

在區(qū)間上,函數(shù)的圖象恒在曲線下方等價于在區(qū)間上恒成立.   

        …………9分

① 若,令,得極值點,,

,即時,在(,+∞)上有,此時在區(qū)間上是增函數(shù),并且在該區(qū)間上有,不合題意;

,即時,同理可知,在區(qū)間上遞增,

,也不合題意;                     …………11分

② 若,則有,此時在區(qū)間上恒有,從而在區(qū)間上是減函數(shù);

要使在此區(qū)間上恒成立,只須滿足,

由此求得的范圍是.        …………13分

綜合①②可知,當時,函數(shù)的圖象恒在直線下方.

 

查看答案和解析>>

函數(shù)是定義在上的奇函數(shù),且。

(1)求實數(shù)a,b,并確定函數(shù)的解析式;

(2)判斷在(-1,1)上的單調性,并用定義證明你的結論;

(3)寫出的單調減區(qū)間,并判斷有無最大值或最小值?如有,寫出最大值或最小值。(本小問不需要說明理由)

【解析】本試題主要考查了函數(shù)的解析式和奇偶性和單調性的綜合運用。第一問中,利用函數(shù)是定義在上的奇函數(shù),且。

解得,

(2)中,利用單調性的定義,作差變形判定可得單調遞增函數(shù)。

(3)中,由2知,單調減區(qū)間為,并由此得到當,x=-1時,,當x=1時,

解:(1)是奇函數(shù),。

,………………2分

,又,,

(2)任取,且

,………………6分

,

,,,

在(-1,1)上是增函數(shù)。…………………………………………8分

(3)單調減區(qū)間為…………………………………………10分

當,x=-1時,,當x=1時,。

 

查看答案和解析>>


同步練習冊答案