又MF平面ABCD.AN平面ABCD. ∴MF∥平面ABCD. ???5分 (2)證明:連BD.由直四棱柱ABCD―A1B1C1D1 可知A1A⊥平面ABCD. 查看更多

 

題目列表(包括答案和解析)

精英家教網已知四棱錐P-ABCD,底面ABCD是∠A=60°、邊長為a的菱形,又PD⊥底ABCD,且PD=CD,點M、N分別是棱AD、PC的中點.
(1)證明:DN∥平面PMB;
(2)證明:平面PMB⊥平面PAD;
(3)求點A到平面PMB的距離.

查看答案和解析>>

已知四棱錐P-ABCD,底面ABCD是∠A=60°、邊長為a的菱形,又PD⊥底ABCD,且PD=CD,點M、N分別是棱AD、PC的中點.
(1)證明:DN∥平面PMB;
(2)證明:平面PMB⊥平面PAD;
(3)求直線PB與平面BD的夾角.

查看答案和解析>>

如圖,四邊形ABCD為正方形,在四邊形ADPQ中,PD∥QA.又QA⊥平面ABCD,QA=AB=
12
PD

(1)證明:PQ⊥平面DCQ;
(2)CP上是否存在一點R,使QR∥平面ABCD,若存在,請求出R的位置,若不存在,請說明理由.

查看答案和解析>>

如圖,已知棱柱ABCD-A1B1C1D1的底面是菱形,且AA1⊥面ABCD,∠DAB=60°,AD=AA1=1,F為棱AA1的中點,M為線段BD1的中點.
(Ⅰ)求證:MF∥面ABCD;
(Ⅱ)判斷直線MF與平面BDD1B1的位置關系,并證明你的結論;
(Ⅲ)求三棱錐D1-BDF的體積.

查看答案和解析>>

精英家教網已知四棱錐P-ABCD的底面是邊長為a的菱形,∠ABC=120°,又PC⊥平面ABCD,PC=a,E是PA的中點.
(1)求證:平面EBD⊥平面ABCD;
(2)求直線PB與直線DE所成的角的余弦值;
(3)設二面角A-BE-D的平面角為θ,求cosθ的值.

查看答案和解析>>


同步練習冊答案