6.[臺(tái)州市?文]21.設(shè).點(diǎn)在軸上.點(diǎn)在 軸上.且 查看更多

 

題目列表(包括答案和解析)

(湖北理21)(本小題滿分14分)

已知m,n為正整數(shù).

(Ⅰ)用數(shù)學(xué)歸納法證明:當(dāng)x>-1時(shí),(1+x)m≥1+mx;

(Ⅱ)對(duì)于n≥6,已知,求證,m=1,1,2…,n;

(Ⅲ)求出滿足等式3n+4m+…+(n+2)m=(n+3)n的所有正整數(shù)n.

查看答案和解析>>

(本小題滿分15分)(文)如圖,在四棱錐P-ABCD中,底面為直角梯形,AD//BC,BAD=,PA⊥底面ABCD,且PA=AD=AB=2BC,M、N分別為PC、PB的中點(diǎn).

     (Ⅰ)求證:PB⊥DM;

     (Ⅱ) 求CD與平面ADMN所成角的余弦

 

查看答案和解析>>

(21) (本小題滿分15分)

     直線分拋物線軸所圍成圖形為面積相等的兩個(gè)部分,求的值.

 

查看答案和解析>>

(2010山東理數(shù))(21)(本小題滿分12分)

如圖,已知橢圓的離心率為,以該橢圓上的點(diǎn)和橢圓的左、右焦點(diǎn)為頂點(diǎn)的三角形的周長(zhǎng)為.一等軸雙曲線的頂點(diǎn)是該橢圓的焦點(diǎn),設(shè)為該雙曲線上異于頂點(diǎn)的任一點(diǎn),直線與橢圓的交點(diǎn)分別為.

(Ⅰ)求橢圓和雙曲線的標(biāo)準(zhǔn)方程;

(Ⅱ)設(shè)直線、的斜率分別為、,證明;

(Ⅲ)是否存在常數(shù),使得恒成立?若存在,求的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

(2010全國(guó)卷2理數(shù))(21)(本小題滿分12分)

    己知斜率為1的直線l與雙曲線C相交于B、D兩點(diǎn),且BD的中點(diǎn)為

   (Ⅰ)求C的離心率;

   (Ⅱ)設(shè)C的右頂點(diǎn)為A,右焦點(diǎn)為F,證明:過A、B、D三點(diǎn)的圓與x軸相切.

查看答案和解析>>


同步練習(xí)冊(cè)答案