題目列表(包括答案和解析)
x2 |
a2 |
y2 |
b2 |
2 |
6 |
已知中心在原點,焦點在軸上的橢圓的離心率為,且經過點.
(Ⅰ)求橢圓的方程;
(Ⅱ)是否存過點(2,1)的直線與橢圓相交于不同的兩點,滿足?若存在,求出直線的方程;若不存在,請說明理由.
【解析】第一問利用設橢圓的方程為,由題意得
解得
第二問若存在直線滿足條件的方程為,代入橢圓的方程得
.
因為直線與橢圓相交于不同的兩點,設兩點的坐標分別為,
所以
所以.解得。
解:⑴設橢圓的方程為,由題意得
解得,故橢圓的方程為.……………………4分
⑵若存在直線滿足條件的方程為,代入橢圓的方程得
.
因為直線與橢圓相交于不同的兩點,設兩點的坐標分別為,
所以
所以.
又,
因為,即,
所以.
即.
所以,解得.
因為A,B為不同的兩點,所以k=1/2.
于是存在直線L1滿足條件,其方程為y=1/2x
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com