如圖,已知橢圓C的中心在原點(diǎn),其一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)相同,又橢圓C上有一點(diǎn)M(2,1),直線l平行于OM且與橢圓C交于A、B兩點(diǎn),連MA、MB.
(1)求橢圓C的方程.
(2)當(dāng)MA、MB與x軸所構(gòu)成的三角形是以x軸上所在線段為底邊的等腰三角形時(shí),求直線l在y軸上截距的取值范圍.

【答案】分析:(1)拋物線的焦點(diǎn),又橢圓C上有一點(diǎn)M(2,1),由此可求出橢圓方程.
(2)設(shè)直線在y軸上的截距為m,則直線,由直線l與橢圓C交于A、B兩點(diǎn),可導(dǎo)出m的取值范圍是{m|-2<m<2且m≠0},設(shè)MA、MB的斜率分別為K1,K2,K1+K2=0,然后結(jié)合題設(shè)條件和根與系數(shù)的關(guān)系知MA,MB與x軸始終圍成等腰三角形,從而得到m的取值范圍.
解答:解:(1)拋物線的焦點(diǎn),又橢圓C上有一點(diǎn)M(2,1)∴橢圓方程為,
(2),設(shè)直線在y軸上的截距為m,則直線
直線l與橢圓C交于A、B兩點(diǎn),
∴m的取值范圍是{m|-2<m<2且m≠0},設(shè)MA、MB的斜率分別為K1,K2,∴K1+K2=0,
=
=
故MA,MB與x軸始終圍成等腰三角形.∴m的取值范圍是{m|-2<m<2且m≠0}
點(diǎn)評(píng):本題考查直線與圓錐曲線的綜合問題,解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意公式的靈活運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,如圖,已知橢圓C:
x24
+y2
=1的上、下頂點(diǎn)分別為A、B,點(diǎn)P在橢圓C上且異于點(diǎn)A、B,直線AP、BP與直線l:y=-2分別交于點(diǎn)M、N;
(I)設(shè)直線AP、BP的斜率分別為k1,k2求證:k1•k2為定值;
(Ⅱ)求線段MN長的最小值;
(Ⅲ)當(dāng)點(diǎn)P運(yùn)動(dòng)時(shí),以MN為直徑的圓是否經(jīng)過某定點(diǎn)?請(qǐng)證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的焦點(diǎn)為F1(1,0)、F2(-1,0),離心率為
2
2
,過點(diǎn)A(2,0)的直線l交橢圓C于M、N兩點(diǎn).
(1)求橢圓C的方程;
(2)①求直線l的斜率k的取值范圍;
②在直線l的斜率k不斷變化過程中,探究∠MF1A和∠NF1F2是否總相等?若相等,請(qǐng)給出證明,若不相等,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇五校高三下學(xué)期期初教學(xué)質(zhì)量調(diào)研數(shù)學(xué)卷(解析版) 題型:解答題

在平面直角坐標(biāo)系xOy中,如圖,已知橢圓C的上、下頂點(diǎn)分別為A、B,點(diǎn)P在橢圓C上且異于點(diǎn)A、B,直線APPB與直線ly=-2分別交于點(diǎn)M、N.

(1)設(shè)直線AP、PB的斜率分別為k1,k2,求證:k1·k2為定值;

(2)求線段MN長的最小值;

(3)當(dāng)點(diǎn)P運(yùn)動(dòng)時(shí),以MN為直徑的圓是否經(jīng)過某定點(diǎn)?請(qǐng)證明你的結(jié)論.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年廣東省華南師大附中高三(下)5月月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

在平面直角坐標(biāo)系xOy中,如圖,已知橢圓C:=1的上、下頂點(diǎn)分別為A、B,點(diǎn)P在橢圓C上且異于點(diǎn)A、B,直線AP、BP與直線l:y=-2分別交于點(diǎn)M、N;
(I)設(shè)直線AP、BP的斜率分別為k1,k2求證:k1•k2為定值;
(Ⅱ)求線段MN長的最小值;
(Ⅲ)當(dāng)點(diǎn)P運(yùn)動(dòng)時(shí),以MN為直徑的圓是否經(jīng)過某定點(diǎn)?請(qǐng)證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年廣東省華南師大附中高三(下)5月月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

在平面直角坐標(biāo)系xOy中,如圖,已知橢圓C:=1的上、下頂點(diǎn)分別為A、B,點(diǎn)P在橢圓C上且異于點(diǎn)A、B,直線AP、BP與直線l:y=-2分別交于點(diǎn)M、N;
(I)設(shè)直線AP、BP的斜率分別為k1,k2求證:k1•k2為定值;
(Ⅱ)求線段MN長的最小值;
(Ⅲ)當(dāng)點(diǎn)P運(yùn)動(dòng)時(shí),以MN為直徑的圓是否經(jīng)過某定點(diǎn)?請(qǐng)證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案