17. 查看更多

 

題目列表(包括答案和解析)

(2011•廣東模擬)(本小題滿分14分 已知函數(shù)f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化簡f(x)的表達式,并求f(x)的最小正周期;
(II)當x∈[0,
π
2
]  時,求函數(shù)f(x)
的值域.

查看答案和解析>>

(07年安徽卷)(本小題滿分14分)

   某國采用養(yǎng)老儲備金制度,公民在就業(yè)的第一年就交納養(yǎng)老儲備金,數(shù)目為a1,以后第年交納的數(shù)目均比上一年增加d(d>0),因此,歷年所交納的儲備金數(shù)目a1,a2,…是一個公差為d的等差數(shù)列,與此同時,國家給予優(yōu)惠的計息政策,不僅采用固定利率,而且計算復(fù)利,這就是說,如果固定年利率為r(r>0),那么,在第n年末,第一年所交納的儲備金就變?yōu)?I>n(1+r)n-1,第二年所交納的儲備金就變?yōu)?I>a2(1+r)n-2,……,以Tn表示到第n年末所累計的儲備金總額.

 (Ⅰ)寫出TnTn-1n≥2)的遞推關(guān)系式;

。á颍┣笞C:Tn=An+Bn,其中是一個等比數(shù)列,是一個等差數(shù)列.

查看答案和解析>>

(本小題滿分14分)
指出函數(shù)上的單調(diào)性,并證明之.

查看答案和解析>>

(07年安徽卷文)(本小題滿分14分)設(shè)F是拋物線G:x2=4y的焦點.

  。á瘢┻^點P(0,-4)作拋物線G的切線,求切線方程:

(Ⅱ)設(shè)A、B為勢物線G上異于原點的兩點,且滿足,延長AF、BF分別交拋物線G于點C,D,求四邊形ABCD面積的最小值.

查看答案和解析>>

(07年安徽卷)(本小題滿分14分)

如圖,在六面體中,四邊形ABCD是邊 

長為2的正方形,四邊形是邊長為1的正方

形,平面,平面ABCD

求證: (Ⅰ)共面,共面.

(Ⅱ)求證:平面

(Ⅲ)求二面角的大小(用反三角函數(shù)值表示).

                                                             

 第(17)題圖

查看答案和解析>>

必修

一、填空題

1、8  2、  3、2|P|  4、  5、向左移,在把各點的橫坐標伸長到原來的3倍

6、18  7、120度  8、  9、  10、②④  11、  12、  13、  14、

二、解答題

15.解:(Ⅰ).………… 4分

,得

∴函數(shù)的單調(diào)增區(qū)間為 .………… 7分

(Ⅱ)由,得

.            ………………………………………… 10分

,或,

. 

,∴.     …………………………………………… 14分

16.解:(Ⅰ)n≥2時,.     ………………… 4分

n=1時,,適合上式,

.               ………………… 5分

(Ⅱ),.          ………………… 8分

∴數(shù)列是首項為4、公比為2的等比數(shù)列.   ………………… 10分

,∴.……………… 12分

Tn.            ………………… 14分

17、⑴    ⑵        ⑶不能

18、⑴

=1時,的最大值為20200,=10時,的最小值為12100。

19、⑴易知AB恒過橢圓的右焦點F(,0)    ⑵ S=       ⑶存在。

20、⑴

⑶(,

附加題選修參考答案

1、⑴BB=  , ⑵  

2、⑴    ⑵  ,,  ,EX=1

3、   

4、⑴    ⑵ MN=2 

5、⑴特征值為2和3 ,對應(yīng)的特征向量分別為

,橢圓在矩陣的作用下對應(yīng)得新方程為

6、提示:,然后用基本不等式或柯西不等式即可。

 

 


同步練習(xí)冊答案