.所以.從而圓心到直線的距離. 查看更多

 

題目列表(包括答案和解析)

如圖,已知直線)與拋物線和圓都相切,的焦點(diǎn).

(Ⅰ)求的值;

(Ⅱ)設(shè)上的一動(dòng)點(diǎn),以為切點(diǎn)作拋物線的切線,直線軸于點(diǎn),以、為鄰邊作平行四邊形,證明:點(diǎn)在一條定直線上;

(Ⅲ)在(Ⅱ)的條件下,記點(diǎn)所在的定直線為,    直線軸交點(diǎn)為,連接交拋物線、兩點(diǎn),求△的面積的取值范圍.

【解析】第一問(wèn)中利用圓的圓心為,半徑.由題設(shè)圓心到直線的距離.  

,解得舍去)

設(shè)與拋物線的相切點(diǎn)為,又,得,.     

代入直線方程得:,∴    所以,

第二問(wèn)中,由(Ⅰ)知拋物線方程為,焦點(diǎn).   ………………(2分)

設(shè),由(Ⅰ)知以為切點(diǎn)的切線的方程為.   

,得切線軸的點(diǎn)坐標(biāo)為    所以,    ∵四邊形FAMB是以FA、FB為鄰邊作平行四邊形

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911460473385651/SYS201207091146532963151648_ST.files/image007.png">是定點(diǎn),所以點(diǎn)在定直線

第三問(wèn)中,設(shè)直線,代入結(jié)合韋達(dá)定理得到。

解:(Ⅰ)由已知,圓的圓心為,半徑.由題設(shè)圓心到直線的距離.  

,解得舍去).     …………………(2分)

設(shè)與拋物線的相切點(diǎn)為,又,得,.     

代入直線方程得:,∴    所以,.      ……(2分)

(Ⅱ)由(Ⅰ)知拋物線方程為,焦點(diǎn).   ………………(2分)

設(shè),由(Ⅰ)知以為切點(diǎn)的切線的方程為.   

,得切線軸的點(diǎn)坐標(biāo)為    所以,    ∵四邊形FAMB是以FA、FB為鄰邊作平行四邊形,

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911460473385651/SYS201207091146532963151648_ST.files/image007.png">是定點(diǎn),所以點(diǎn)在定直線上.…(2分)

(Ⅲ)設(shè)直線,代入,  ……)得,                 ……………………………     (2分)

,

的面積范圍是

 

查看答案和解析>>

在極坐標(biāo)系中,圓和直線相交于、兩點(diǎn),求線段的長(zhǎng)

【解析】本試題主要考查了極坐標(biāo)系與參數(shù)方程的運(yùn)用。先將圓的極坐標(biāo)方程圓 即 化為直角坐標(biāo)方程即

然后利用直線 ,得到圓心到直線的距離,從而利用勾股定理求解弦長(zhǎng)AB。

解:分別將圓和直線的極坐標(biāo)方程化為直角坐標(biāo)方程:

 即 即 ,

,  ∴  圓心    ---------3分

直線 ,   ------6分

則圓心到直線的距離,----------8分

      即所求弦長(zhǎng)為

 

查看答案和解析>>

在平面直角坐標(biāo)系xoy中,直線l的參數(shù)方程是
x=
3
+
1
2
t
y=3+
3
2
t
(其中t為參數(shù)),以O(shè)x為極值的極坐標(biāo)系中,圓C的極坐標(biāo)方程為ρ=4cosθ,則圓心到直線的距離為
3
3

查看答案和解析>>

(2012•豐臺(tái)區(qū)一模)在直角坐標(biāo)系xOy中,直線l的參數(shù)方程是
x=1+
3
2
t
y=
1
2
t
(t為參數(shù)).以O(shè)為極點(diǎn),x軸正方向極軸的極坐標(biāo)系中,圓C的極坐標(biāo)方程是ρ2-4ρcosθ+3=0.則圓心到直線的距離是
1
2
1
2

查看答案和解析>>

我們知道,判斷直線與圓的位置關(guān)系可以用圓心到直線的距離進(jìn)行判別,那么直線與橢圓的位置關(guān)系有類似的判別方法嗎?請(qǐng)同學(xué)們進(jìn)行研究并完成下面問(wèn)題.
(1)設(shè)F1、F2是橢圓M:
x2
25
+
y2
9
=1
的兩個(gè)焦點(diǎn),點(diǎn)F1、F2到直線L:
2
x-y+
5
=0的距離分別為d1、d2,試求d1•d2的值,并判斷直線L與橢圓M的位置關(guān)系.
(2)設(shè)F1、F2是橢圓M:
x2
a2
+
y2
b2
=1
(a>b>0)的兩個(gè)焦點(diǎn),點(diǎn)F1、F2到直線L:mx+ny+p=0(m、n不同時(shí)為0)的距離分別為d1、d2,且直線L與橢圓M相切,試求d1•d2的值.
(3)試寫出一個(gè)能判斷直線與橢圓的位置關(guān)系的充要條件,并證明.
(4)將(3)中得出的結(jié)論類比到其它曲線,請(qǐng)同學(xué)們給出自己研究的有關(guān)結(jié)論(不必證明).

查看答案和解析>>


同步練習(xí)冊(cè)答案