題目列表(包括答案和解析)
PC |
CN |
PD |
DN |
PC |
CN |
PD |
DN |
(08年海淀區(qū)期中練習(xí)文)(14分)
已知橢圓的中心是坐標(biāo)原點(diǎn),它的短軸長(zhǎng)為,右焦點(diǎn)為,右準(zhǔn)線與軸相交于點(diǎn), ,過(guò)點(diǎn)的直線與橢圓相交于兩點(diǎn), 點(diǎn)和點(diǎn)在上,且軸.
(I) 求橢圓的方程及離心率;
(II)當(dāng)時(shí),求直線的方程;
(III)求證:直線經(jīng)過(guò)線段的中點(diǎn).
一、選擇題
題號(hào)
1
2
3
4
5
6
7
8
9
10
11
12
答案
A
B
C
C
A
C
B
C
C
B
B
C
二、填空題
13.() 14.x=0或y=0 15.4 16.2/3 17.20 18.①④
三、解答題
19.解:A(―4,2)關(guān)于直線:對(duì)稱的點(diǎn)為,因?yàn)橹本是中的平分線,可以點(diǎn)在直線上,故直線的方程是,由,,則是以為直角的三角形,,10
20.解:由,,設(shè)雙曲線方程為,橢圓方程為,它們的焦點(diǎn),則
,又,,雙曲線方程為,橢圓方程為
21.解:,設(shè)橢圓方程為①,設(shè)過(guò)和的直線方程為②,將②代入①得-③,設(shè),的中點(diǎn)為代入,,,由③,,解得
22.解:⑴設(shè)直線方程為:代入,得
,另知直線與半圓相交的條件為,設(shè),則,,點(diǎn)位于的右側(cè),應(yīng)有,即,(亦可求出的橫坐標(biāo))
⑵若為正,則點(diǎn)到直線距離
與矛盾,在⑴條件下不可能是正△.
23.⑴由題意設(shè)橢圓方程為:,則解得: ,所以橢圓方程為:
⑵設(shè)“左特征點(diǎn)”,設(shè),為的平分線,,,下面設(shè)直線的方程為,代入得:,代入上式得解得
⑶橢圓的“左特征點(diǎn)”M是橢圓的左準(zhǔn)線和x軸的交點(diǎn)證明如下:
證明:設(shè)橢圓的左準(zhǔn)線與x軸相交于點(diǎn)M,過(guò)點(diǎn)A、B分別作的垂線,垂足分別為點(diǎn)C、D。據(jù)橢圓第二定義得,
∵∥∥,∴,
∴∵與均為銳角,∴。
∴!為的平分線。故點(diǎn)為橢圓的“左特征點(diǎn)”。
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com